	Tune	Author	. F	History Citation		Literature Cutoff Date		
	Full Evaluation	L Katakura, Z	D. Wu	NDS 109, 165	5 (2008)) 1-Apr-2008		
$Q(\beta^{-})=-613.2\ 22;\ S(n)=$ Note: Current evaluation $Q(\beta^{-})=-616.5\ 21;\ S(n)=$	*8489.2 24; S(p)= has used the follo *8487.6 26; S(p)=	12093 20; $Q(\alpha)$ = owing Q record. 12100 24; $Q(\alpha)$ =	=-6702 <i>4</i> =-6688 <i>19</i>	2012Wa38 2003Au03	(2000)	1 npi 2000		
			124	Sn Levels				
		Cr	ross Refere	nce (XREF) Fla	ags			
		n β^- decay (3.7 f) n β^- decay (3.12 Sn IT decay Sn(t,p) Sn(γ,γ'),(pol γ,γ'	s) F 2 s) G H I () J	124 Sn(e,e') 124 Sn(n,n' γ) 124 Sn(p,p') 124 Sn(p,p' γ) 124 Sn(d,d')	K 1 L 1 M C N 1	124 Sn(³ He, ³ He') 124 Sn(α, α') Coulomb excitation 128 Te(d, ⁶ Li)		
$\begin{array}{r} T_{1/2} \left(2\beta^- \left(\vartheta \nu + 2\nu \right) \left(\vartheta^+ \right. \right. \right. \\ & > 9.1 \times 10^{20} \\ & > 3.1 \times 10^{18} \\ & > 2.3 \times 10^{18} \\ T_{1/2} \left(2\beta^- \left(\vartheta \nu + 2\nu \right) \left(\vartheta^+ \right. \right. \right. \\ & > 1.1 \times 10^{21} \\ & > 7.7 \times 10^{18} \\ & > 6.7 \times 10^{18} \\ T_{1/2} \left(2\beta^- \left(\vartheta \nu + 2\nu \right) \left(\vartheta^+ \right. \right. \\ & > 9.4 \times 10^{20} \\ & > 4.4 \times 10^{18} \\ T_{1/2} \left(2\beta^- \left(\vartheta \nu + 2\nu \right) \left(\vartheta^+ \right. \right. \\ & > 1.2 \times 10^{21} \\ & > 7.9 \times 10^{18} \\ T_{1/2} \left(2\beta^- \left(\vartheta \nu + 2\nu \right) \left(\vartheta^+ \right. \\ & > 1.2 \times 10^{21} \\ T_{1/2} \left(2\beta^- \left(\vartheta \nu + 2\nu \right) \left(\vartheta^+ \right. \\ & > 8.2 \times 10^{20} \\ & > 4.4 \times 10^{18} \\ T_{1/2} \left(2\beta^- \left(\vartheta \nu + 2\nu \right) \left(\vartheta^+ \right. \\ & > 8.6 \times 10^{20} \\ & > 4.4 \times 10^{18} \\ T_{1/2} \left(2\beta^- \left(\vartheta \nu + 2\nu \right) \left(\vartheta^+ \right. \\ & > 9.6 \times 10^{20} \\ & > 3.1 \times 10^{18} \\ T_{1/2} \left(2\beta^- \left(\vartheta \nu + 2\nu \right) \left(\vartheta^+ \right. \\ & > 9.6 \times 10^{20} \\ & > 3.1 \times 10^{18} \\ T_{1/2} \left(2\beta^- \left(\vartheta \nu + 2\nu \right) \left(\vartheta^+ \right. \right) \\ & > 9.5 \times 10^{20} \end{array}$	to 2 ₁ - y (2008BaZZ) y (2008Da02) y (2007Ki13) to 0 ₁ - y (2008BaZZ) y (2008BaZZ)	+): +): +): +): +): +): +):						
$E(level)^{\dagger}$ J^{π}	T _{1/2} &	XREF				Comments		
0.0 0 ⁺ st	able ABCD	EFGHIJKLMN A P EFGHIJKLMN J J ($^{1/2}=4.$ Mass excess (2005Si3 u=-0.30 20 J^{π} : E2 tran u: From tra 2005St24 Q: From C	6759 fm 12 (20 ss = -88228 20 w 4). 2; Q = -0.01 17 2; Q = -0.01 17	04An14, with Penn egral PA	, evaluation). ning trap mass spectrometer ISOLTRAP C (1980Ha19,1989Ra17). See also 975Gr30,1989Ra17). See also 2005St24		

¹²⁴Sn Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\&}$		XREF		Comments				
2101.711 23	4+	3.7 ps 4	AB D	FGH	MN	compilation. $T_{1/2}$: from B(E2) in Coul. ex. Others: 0.93 ps 13 from (γ, γ') ; > 1.2 ps from $(n,n'\gamma)$. 2001Ra27 evaluation gives 0.917 ps 22. XREF: F(2180). J^{π} : L=4 in (p,p') ; L=5 in (t,p) but its assignment is questionable. $T_{1/2}$: from B(E2) in Coul. ex. Other: >0.8 ps from DSA in $(n,n'\gamma)$. P(E4)($r_{2}, q')=0.014$ 3				
2129.596 25	2^{+}	0.8 ps +5-2	В	GHIJ	MN	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$, log $ft=5.63$ from $(1)^+$.				
2192.17 <i>3</i> 2204.620 <i>23</i>	0 ⁺ (5 ⁻)	>0.55 ps 0.27 µs 6	B A CD	GH GH J	N	$J^{\pi}: J^{\pi} = 0^+ \text{ from } \gamma(\theta), \gamma \text{-pol and excitation function in } (n,n'\gamma).$ XREF: D(2213). $J^{\pi}: E2 \ \gamma \ \text{from } (7^-), L=5(+4) \ \text{in } (p,p').$ $T_{1/2}: \ \text{from } \beta\gamma(t) \ ^{124} \text{In } \beta^- \ \text{decay } (3.7 \ \text{s}) \ (1979\text{Fo10}).$				
2221.75 5	4+ #	0.9 ps +9-3	В	G						
2325.01 4	(7-)	$3.1 \ \mu s \ 5$	A CD	GH	N	J^{π} : L=7 in (p,p') and (t,p). T _{1/2} : from $\beta\gamma$ (t) ¹²⁴ In β^- decay (3.7 s) (1979Fo10).				
2366.5 5 2426.316 21	2+	0.35 ps +20-10	B DE	GH J	MN	J^{π} : E2 γ to 0 ⁺ . T _{1/2} : other: >0.08 ps in Coul. ex., 0.72 ps <i>18</i> in (γ,γ').				
2448 [‡] 10	(8 ⁺)			Н	n	J^{π} : L=(8) in (p,p').				
2454.34 3	6+ #			G	n					
2568.15 4	6 ^{-#}		Α	G						
2578.44 5	8(+)		A C	G		J^{π} : $\gamma(\theta)$ and γ -pol in $(n,n'\gamma)$, low level population in $(n,n'\gamma)$,				
2602.495 25	3-	0.068 ps 6	ΒD	FGH J	LMn	E2 γ from (10'). XREF: D(2612)L(2610). J^{π} : L=3 in (α,α'). B(E3)(e,e')=0.076 11: 2002Ki06 evaluation gives 0.073 10.				
2614.45 3	4 ^{-#}			G	n					
2656.6 5	(10 ⁺)	45 μs 5	С			%IT=100 J ^{π} : systematics of 10 ⁺ state in ¹¹⁶ Sn- ¹³⁰ Sn isotopes. T _{1/2} : from measurements with pulsed beam in ¹²⁴ Sn IT decay (1992Br06).				
2688.50 5	0+	>0.28 ps		GHI	MN	J^{π} : p(θ) from (p,p') IAR and excitation function in (n,n' γ). T _{1/2} : other: >0.2 ps in Coul. ex.				
2701.78 3	5 ^{-#}			G	n					
2703.187 25	2+ #	0.4 ps +4-1	В	G	n					
2706 [‡] 10	(4^{+})			н	n	J^{π} : L=(4) in (p,p').				
2753.05 3	4 ^{-#}			G						
2819.3 5	(6^{+})	>0.4 ps		G		J ^{π} : from $\gamma(\theta)$ and excitation function in $(n,n'\gamma)$.				
2836.58 4	3+ #	>0.28 ps	В	G J						
2855.13 5	6 ^{-#}			G						
2875.37 5	2+ #	0.13 ps +7-3	В	Gh	n	XREF: h(2880).				
2878.65 5	2+ #	0.067 ps +18-14	В	Gh	n					
2958.11 6	4+	>0.9 ps		GH		J^{π} : $\gamma(\theta)$ and (M1+E2) γ to 4^+ in $(n,n'\gamma)$.				
2988.03 <i>3</i>	3-#	>0.55 ps		GH J		XREF: H(3002).				
3011.1 <i>3</i> 3109.5 5	(7,8,9) 1.2^+		A B			J^{π} : log ft=6.57 from (8 ⁻). J^{π} : γ to 0 ⁺ .				
3130 20	$(3^{-} 5^{-})$		2	нт		I^{π} : $\mathbf{n}(\mathbf{\theta})$ in $(\mathbf{n}, \mathbf{n}')$ through $f_{\pi/2}$ analog resonance				
3143.86 6 3214.36 <i>10</i>	4^+ 2^+	0.11 ps +9-4 0.025 ps 6	ΒE	GH GH J		J^{π} : L=4 in (p,p'). XREF: J(3190).				

¹²⁴Sn Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\&}$	XREF	Comments
		· · · · ·		J^{π} : L=2 in (p.p').
				$T_{1/2}$: other: 0.044 ps 6 in (γ, γ') .
3227.95 11		0.07 ps +23-3	G	1/2 1 (777)
3240.36 21	(7,8,9)		Α	J^{π} : log <i>ft</i> =6.40 from (8 ⁻).
3264.49 11	2+	0.19 ps +22-8	B Gh	XREF: h(3275).
				J^{π} : $\gamma(\theta)$ and γ -pol in $(n,n'\gamma)$.
3267.13 9	1,2,3	>0.14 ps	Gh	J^{π} : $\gamma(\theta)$ in $(n, n'\gamma)$.
3293.42 9	2,3		BG	$J^{\pi}: \gamma(\theta) \text{ in } (n,n'\gamma).$
3312.99? /	2,3,4	$0.07 m \pm 0.2$	G	$J^{*}: \gamma(\theta) \text{ in } (n, n' \gamma).$
2222 54 0	2,3 2(+)	0.07 ps +9-5	ВС	J^{+} , $\gamma(0)$ in (ii, ii γ).
3335.54 9	(3.4)		ь сі	J^{*} . $\gamma(\theta)$ and $(M1+E2) \gamma$ to 2^{-1} in $(1,11 \gamma)$. I^{π} : $\alpha(\theta)$ in $(n n'\alpha)$
3360.5	(3,4) 4 ⁺		υн	J : y(0) = (n, n'y).
3362.3.3	(789)		A i	I^{π} : log $f_{t=6}^{-1}$ (p,p).
3363 59 8	3 (+)		G J	I^{π} : $\gamma(\theta)$ and (M1+E2) γ to 4 ⁺ in (n n' γ)
3396.5 8	1.2^{+}		В	J^{π} : γ to 0^+ .
3410.14 13	1		G	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
3414 5	4+		DHL	J^{π} : L=4 in (α, α') .
3490.18 14	1-@	0.0051 ps 5	EG	$T_{1/2}$: from (γ, γ'), other: 0.006 ps +4-3 in (n,n' γ).
	-			$B(E_1)(\gamma, \gamma') = 6.1 \times 10^{-05} \ 7.$
3498.58 15	1,2,3		G	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
3509.15 9	3(+)		D GH	J^{π} : $\gamma(\theta)$ and (M1+E2) γ to 2 ⁺ in (n,n' γ).
3524.02 8	$(7^{-}, 8^{-})$		Α	J^{π} : γ to 6 ⁻ , log <i>ft</i> =5.06 from (8 ⁻).
3551.53 12	(3 ⁻)		B GH	XREF: H(3560).
				J^{π} : p(θ) in (p,p') through $f_{7/2}$ analog resonance allows (3 ⁻ ,5 ⁻).
				$\log ft = 6.26$ from (1) ⁺ rules out 5 ⁻ .
3583.66 13	2+		GH	XREF: H(3570).
2602.06.17			~~~	J^{n} : L=2 in (p,p').
3603.86 17	2,3		GH	$J^{\pi}: \gamma(\theta) \text{ in } (n,n'\gamma).$
3643.4 3	(7,8,9)		АН	$J^{*}: \log ft = 0.18$ from (8).
3684 01 8	(7^{-})		ь с л ц	J^{*} : $\gamma(\theta)$ III (II,II γ). I^{π} : log $ff = 4.55$ from (8 ⁻). I = (6.7) in (n n')
2607.2.4	10	0.000 . 12 10		$J : \log f t = 4.55 \mod (6^{\circ}), L = (6,7) \mod (p,p).$
3697.34	1 ~ 2+	0.029 ps + 13 - 10 0.020 ps + 28 - 15	EG	$\Gamma_{1/2}$: other: 0.034 ps o in (γ, γ) .
5710.59 19	2	0.050 ps +20-15	всч	$J = EZ \neq 0.000$. Two: other: 0.054 ps 0 in (0.07)
3724 7 3	1 2+		B G	$I_{1/2}^{\pi}$, $\nu \text{ to } 0^+$
3741.62.10	$(2)^+$		B Gh	XREF: h(3752).
	(-)			J^{π} : log ft=5.77 from (1) ⁺ , γ 's to 2 ⁺ , 3 ⁻ and 4 ⁺ .
3760.27 20	$(0^+, 1, 2)$		B h	J^{π} : log ft=6.46 from (1) ⁺ , γ to 2 ⁺ .
3761.83 21	2+	0.05 ps +7-3	B Gh	J^{π} : E2 γ to 0^+ .
3765.14 11	$(7^{-}, 8^{-}, 9^{-})$		Α	J^{π} : log <i>ft</i> =5.26 from (8 ⁻).
3787 10			Н	
3802.54 17	2,3		G	J^{π} : $\gamma(\theta)$ in $(n, n'\gamma)$.
3809.71.21	(7,8,9)		A	J^* : log $ft=5.86$ from (8).
3820 10	(3,3)		С	$J^{(1)}$: p(θ) in (p,p) inrough $1_{7/2}$ analog resonance.
383/ 3 7	2,3,4		B	$J : \gamma(0) = (1,1) \gamma(0)$
3864 26 13	1,2 1 2 ⁺		BG	J^{π} : γ to 0^{+}
3872 10	(6^+)		Н	J^{π} : L=(6) in (p,p').
3888.0 8	1,2+		B 1	XREF: 1(3900).
	<i>,</i>		_	J^{π} : γ to 0^+ .
3910.7 9	2+		B H 1	J^{π} : L=2 in (p,p').
3917.27 5	2+		B h	XREF: h(3930).
			-	J^{π} : γ 's to 0^+ and 4^+ .
3923 5	4 ⁺		D h	XREF: h(3930).

¹²⁴Sn Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} &	XRI	EF	Comments
2021 5 2	(7, 9, 0)		A 1		J^{π} : L=4 in (t,p).
5951.5 5	(7,8,9)		A I	1	AREF: II(5950). I^{π} : log $ft = 5.92$ from (8^{-1})
3963.6.3	12		CF	1	J = 10g f(-3.52 from (6)). $I^{\pi} = \gamma(\theta) \text{ in (n n' \gamma)}$
4043.8.5	1,2 1 2 ⁺		RF	1	J^{π} : $\gamma(0)$ in (i.i., γ).
4074 4 4	$^{1,2}_{2}$		6	1	$J^{\pi}: \gamma(\theta) \text{ in } (n n' \gamma)$
4094 2 3	$\frac{2}{23}$		G		J^{π} : $\gamma(\theta)$ in $(n, n' \gamma)$.
4120.20	2,5		, F	Ŧ	5 . <i>y</i> (0) in (ii,ii <i>y</i>).
4156.1.3	2^{+}		B GH	4	$J^{\pi}: L=2$ in (p,p') .
4208.1 3	2,3		G		J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
421926	1@	13.1 ^{<i>a</i>} fs <i>14</i>	F		
4227.57 16	1.2^{+}	10.1 10 17	BG		J^{π} : γ to 0^+ .
4263.5 6	1	23 ^a fs 4	E		
4264.1 3	1,2+		BH	ł	J^{π} : γ to 0^+ .
4269.82 22	(4)		G		J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
4331.4 4	1,2+		B H	ł	XREF: H(4343).
					J^{π} : γ to 0^+ .
4359.58 20	0^{+} to 4^{+}		G		J^{π} : γ to 2^+ .
4400 20			H	ł	
4470.3 4	1,2+		B H	ł	J^{π} : γ to 0^+ .
4528.8 4	1,2+		BD F	ł	J^{π} : γ to 0^+ .
4560 20			H	-	
4570 20	1.0+		- H	4	\mathbf{T}^{T} , \mathbf{O}^{+}
4604.6 /	1,2	10.10 fr 25	в		J^{*} : γ to 0° .
4005.8 0	(4^{\pm})	10.1" 18 23	E D		Π , $I = 4$ in (t, p)
4020 3	(4) $(3^{-} 4^{-} 5^{-})$		U L	J	J. L=4 III (1,p). I^{π} : $p(\theta)$ in (p,p') through free analog resonance
4672 5	(5,+,5) 3 ⁻			1 1	J^{π} : $J = 3$ in (t n)
4707 5	3-		DF	. 1	XREF: 1(4800)
	0				J^{π} : L=3 in (t.p).
4770 20	$(3^{-} 4^{-})$		F	4 I	I^{π} : $p(\theta)$ in (p,p') through $f_{\pi/2}$ analog resonance
4818 5	(5^{-})		ים		J^{π} : $J = 5$ in (t, n)
4880 10	3-		DF	4 I	$J^{\pi}: L=3$ in (t,p).
4916 10	3-		D		J^{π} : L=3 in (t,p).
4948 5	(5 ⁻)		Dł	ı	XREF: h(4960).
					J^{π} : L=5 in (t,p).
4953.8 7	1@	14 ^a fs 3	Е		
4970 5	$(2^+, 3^-)$		Dł	ı	J^{π} : L=(2,3) in (t,p).
5014 5	3-		DH	ł	J^{π} : L=3 in (t,p).
5050 20			H	ł	
5064.8 7		7.0 ^a fs 15	E		
5100 20			H	ł	
5131 5	(4 ⁺)		D		J^{π} : L=(4) in (t,p).
5166 5	3-		D	1	XREF: 1(5200).
5106 5	2-				J^{n} : L=3 in (t,p).
5196 5	3			1 1	$J^{A}: L=3$ in (t,p).
5207 5	(/)			1 J	$J^{\prime\prime}$: $L=7$ in (i,p).
5290 20	(5^{-})		ר ד	1	$I^{\pi}: I = 5$ in (t n)
5345 5	(5^{-})		י <i>ע</i> ח	•	$I^{\pi}: L=5$ in (t,p).
5379.5	(5^{-})		D F	ł	J^{π} : L=5 in (t,p).
5430 5	(5 ⁻)		DH	ł	J^{π} : L=5 in (t,p).
5459 10	(5-)		DH	ł	J^{π} : L=5 in (t,p).
5520 20			H	ł	
5552 10			D		

¹²⁴Sn Levels (continued)

E(level) [†]	J^{π}	T _{1/2} &	XREF	Comments
5614 10			DH	
5640 20			Н	
5710 20			H	
5760 20			H	
5842.6.7	1-@	1.02^{a} fs 8	F	$B(F1)(\alpha, \alpha') = 6.4 \times 10^{-5} 5$
5866 10	1	1.02 15 0	Dh	B(EI)(7,7)=0.1/10 5.
5869.8 8	$(1)^{@}$	5.1 ^{<i>a</i>} fs 10	Εh	
5902.7 7	1@	5.4 ^{<i>a</i>} fs 20	Е	
5951.9 7	1@	1.38 ^a fs 19	Е	
5968.6 7	1@	2.2 ^{<i>a</i>} fs 4	E	
6002.2 7	1@	1.7 ^a fs 3	Е	
6129.2 7	1@	0.82 ^{<i>a</i>} fs 9	E	
6171.0 12	1@	1.04 ^{<i>a</i>} fs 10	E	
6184.2 6	1-@	0.94 ^a fs 11	Е	$B(E1)(\gamma,\gamma')=5.9\times10^{-5}$ 7.
6236.7 7	1@	0.64 ^a fs 6	E	
6287.3 7	1@	1.52 ^{<i>a</i>} fs 24	Е	
6321.8 7	1-@	0.70 ^{<i>a</i>} fs 6	Е	$B(E1)(\gamma,\gamma')=7.4\times10^{-5}$ 7.
6369.3 7	1-@	0.277 ^a fs 16	E	B(E1)(γ, γ')=18.2×10 ⁻⁵ 11.
6453.3 7	1@	1.30 ^a fs 16	E	
6467.7 6	1@	0.95 ^a fs 9	Е	
6503.4 6	1@	1.26 ^{<i>a</i>} fs 20	E	
6524.2 5	1-@	0.56 ^a fs 6	E	B(E1)(γ, γ')=8.3×10 ⁻⁵ 9.
6548.7 5	1.	0.65 ^{<i>a</i>} fs 7	E	
6561.0 7	1-@	0.35 ^{<i>a</i>} fs 3	E	B(E1)(γ, γ')=13.1×10 ⁻⁵ 12.
6566.0 8	1@	0.85 ^a fs 11	E	
6584.3 6	1-@	0.75 ^{<i>a</i>} fs 8	E	$B(E1)(\gamma,\gamma')=6.0\times10^{-5}$ 6.
6600.0 7	1@	1.4 ^{<i>a</i>} fs 3	E	
6635.8 6	1-@	0.39 ^{<i>a</i>} fs 3	E	$B(E1)(\gamma,\gamma')=11.4\times10^{-5}$ 9.
6678.1 7	1-@	0.42 ^{<i>a</i>} fs 3	E	$B(E1)(\gamma,\gamma')=10.4\times10^{-5}$ 9.
6683.5 8	1-@	0.71 ^{<i>a</i>} fs 9	E	B(E1)(γ, γ')=6.1×10 ⁻⁵ 8.
6705.6 8	1-@	0.97 ^a fs 14	E	B(E1)(γ, γ')=4.5×10 ⁻⁵ 6.
6713.8 7	1-@	0.52 ^{<i>a</i>} fs 5	E	B(E1)(γ,γ')=8.3×10 ⁻⁵ 8.
6722.5 6	1@	0.66 ^{<i>a</i>} fs 7	E	
6764.4 8	1-@	0.58 ^{<i>a</i>} fs 7	E	B(E1)(γ, γ')=7.2×10 ⁻⁵ 9.
6775.8 8	1@	0.84 ^{<i>a</i>} fs 15	E	
6790.8 8	1-@	0.71^{a} fs 8	E	B(E1)(γ, γ')=5.8×10 ⁻⁵ 7.
6808.2 6	1 ⁽⁺⁾	1.08 ^{<i>a</i>} fs 14	E	B(M1)(γ, γ')=0.35 5.
6847.3 8	1-@	0.90 ^{<i>a</i>} fs 10	E	B(E1)(γ, γ')=4.5×10 ⁻⁵ 5.
6902.3 8	1-@	1.13 ^a fs 14	E	B(E1)(γ, γ')=3.5×10 ⁻⁵ 4.
6928.4 8	(1) [@]	1.4 ^{<i>a</i>} fs 4	E	
6939.1 8	1 ^w	1.6 ^{<i>a</i>} fs 3	E	
6947.7 8	1 ^w	1.6 ^{<i>a</i>} fs 3	E	
7018.2 8	1"	1.07 ^{<i>a</i>} fs 13	E	
7032.7 7	1-@	0.97 ^a fs 11	E	B(E1)(γ, γ')=3.9×10 ⁻⁵ 4.
7062.4 9	1 [@]	2.6 ^{<i>a</i>} fs 6	E	

¹²⁴Sn Levels (continued)

E(level) [†]	J^{π}	T _{1/2} &	XREF	Comments
7071.3 8	1 [@]	1.31 ^a fs 18	E	
7086.7 7	1 [@]	1.46 ^a fs 25	E	
7125.9 7	1 [@]	1.22 ^a fs 17	Е	
7234.0 8	1 @	1.8 ^a fs 5	Е	
7258.8 10	1 [@]	1.7 ^a fs 5	E	
7295.7 7	1-@	0.63 ^a fs 5	E	$B(E1)(\gamma,\gamma')=5.3\times10^{-5}$ 4.
7308.7 9	1@	1.7 ^a fs 4	Е	
7326.4 7	1 [@]	1.7 ^a fs 4	Е	
7337.7 7	1 ^{-@}	0.76 ^a fs 11	E	B(E1)(γ, γ')=4.3×10 ⁻⁵ 6.
7344.6 7	1 [@]	1.06 ^{<i>a</i>} fs 21	Е	
7394.7 4	1-@	0.93 ^a fs 15	Е	$B(E1)(\gamma,\gamma')=3.5\times10^{-5}$ 6.
7487.8 7	1 ^{-@}	0.72 ^{<i>a</i>} fs 9	E	$B(E1)(\gamma,\gamma')=4.3\times10^{-5}$ 6.
7536.7 7	1 ^{-@}	0.70 ^a fs 11	E	$B(E1)(\gamma,\gamma')=4.4\times10^{-5}$ 7.
7551.1 6	1 ^{-@}	0.83 ^a fs 12	E	B(E1)(γ, γ')=3.6×10 ⁻⁵ 5.
7567.1 10	1 [@]	1.33 ^a fs 18	E	
7576.1 7	1-@	0.96 ^a fs 12	E	B(E1)(γ, γ')=3.1×10 ⁻⁵ 4.
7596.6 10	1 ^{-@}	0.64 ^a fs 6	E	B(E1)(γ, γ')=4.7×10 ⁻⁵ 4.
7604.0 8	1-@	0.59 ^a fs 8	E	B(E1)(γ, γ')=5.0×10 ⁻⁵ 7.
7642.9 8	1-@	1.22 ^{<i>a</i>} fs 24	E	B(E1)(γ, γ')=2.4×10 ⁻⁵ 5.
7666.3 7	1 [@]	1.9 ^a fs 3	E	
7679.1 14	1 [@]	1.7 ^a fs 4	E	
7684.2 11	1-@	0.92 ^{<i>a</i>} fs 17	E	B(E1)(γ, γ')=3.1×10 ⁻⁵ 6.
7691.5 7	1@	1.08 ^{<i>a</i>} fs 18	E	
7702.9 9	1@	2.2 ^{<i>a</i>} fs 5	E	
7747.7 7	1-@	0.76 ^{<i>a</i>} fs 8	E	B(E1)(γ, γ')=3.7×10 ⁻⁵ 4.
7759.4 4	1-@	0.62 ^{<i>a</i>} fs 6	E	B(E1)(γ, γ')=4.5×10 ⁻⁵ 4.
7770.9 6	1@	1.09 ^{<i>a</i>} fs 20	E	
7778.4 9	1@	1.6 ^{<i>a</i>} fs 3	E	
7788.6 5	1@	0.78 ^{<i>a</i>} fs 9	E	
7815.6 5	1-@	0.345 ^{<i>a</i>} fs 25	E	$B(E1)(\gamma,\gamma')=7.9\times10^{-5}$ 6.
7863.7 8	1-@	0.90 ^{<i>a</i>} fs 11	E	B(E1)(γ, γ')=3.0×10 ⁻⁵ 4.
7872.4 6	1@	0.78 ^{<i>a</i>} fs 12	E	
7880.5 5	1-@	0.39 ^a fs 3	E	$B(E1)(\gamma,\gamma')=6.9\times10^{-5}$ 5.
7905.4 12	1@	1.6 ^a fs 3	E	
7913.4 8	1@	1.03 ^{<i>a</i>} fs 21	E	
7939.3 12	1 [@]	1.6 ^{<i>a</i>} fs 3	E	
7957.4 9	1@	0.53 ^a fs 3	E	
7999.2 9	1-@	0.90 ^{<i>a</i>} fs 12	E	B(E1)(γ, γ')=2.8×10 ⁻⁵ 4.
8112.1 16	1@	1.22 ^{<i>a</i>} fs 18	E	
8119.1 8	1@	0.55 ^a fs 4	E	
8132.0 15	1@	0.64 ^{<i>a</i>} fs 6	E	
8162.5 8	1@	1.17 ^a fs 16	E	
8214.6 12	1@	1.6 ^{<i>a</i>} fs 3	E	
8229.2 6	1@	0.72 ^{<i>a</i>} fs 8	E	
8257.2 9	1 [@]	1.43 ^a fs 18	Е	

¹²⁴Sn Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} &	XREF	Comments
8270.1 7	1 ⁽⁺⁾	0.81 ^a fs 6	Е	$B(M1)(\gamma,\gamma')=0.26\ 2.$
8350.4 13	1 [@]	1.44 ^a fs 19	Е	
8376.5 11	1 ^{-@}	0.78 ^{<i>a</i>} fs 7	Е	B(E1)(γ, γ')=2.9×10 ⁻⁵ 2.
8423.1 7	1 @	0.92 ^{<i>a</i>} fs 9	Е	
8433.5 10	1 [@]	1.08 ^a fs 13	E	

[†] For γ -connecting levels from a least-squares fit to the adopted E γ 's. Others from (t,p), unless otherwise noted.

[‡] From (p,p').

From $\gamma(\theta)$ and γ -pol in $(n,n'\gamma)$.

[@] From $\gamma'(90^{\circ})/\gamma'(127^{\circ})$ and asymmetry in (pol γ, γ').

& From DSA of γ' s in $(n,n'\gamma)$, unless otherwise noted. ^{*a*} From $\Gamma^2_{\gamma 0}/\Gamma_{\gamma}$ and branching ratios in (γ, γ') .

						Adopte	ed Levels, Gan	nmas (continued	<u>1)</u>
							γ (¹²⁴ S	<u>n)</u>	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{b}	E_f	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}	Comments
1131.739	2+	1131.69 2	100	0.0	0+	E2		9.85×10 ⁻⁴	B(E2)(W.u.)=9.0 3 α (K)=0.00855 12; α (L)=0.0001039 15; α (M)=2.03×10 ⁻⁵ 3; α (N+)=5.51×10 ⁻⁶ 8 α (N)=3.81×10 ⁻⁶ 6; α (O)=3.27×10 ⁻⁷ 5; α (IPF)=1.368×10 ⁻⁶ 20
2101.711	4+	969.97 2	100	1131.739	2+	E2		1.38×10 ⁻³	Mult.: from α (K)exp=0.0009 2 in ¹²⁴ In β^- decay (3.7 s). B(E2)(W.u.)=4.8 6 α (K)=0.001195 17; α (L)=0.0001473 21; α (M)=2.88×10 ⁻⁵ 4; α (N+)=5.86×10 ⁻⁶ 9
2129.596	2+	997.85 2	100.00 10	1131.739	2+	M1+E2	+3.2 +7-5	1.31×10 ⁻³ 2	$\alpha(N)=5.40\times10^{-6} \ 8; \ \alpha(O)=4.59\times10^{-7} \ 7$ B(M1)(W.u.)=0.0021 5; B(E2)(W.u.)=17.4 4 $\alpha(K)=0.001142 \ 17; \ \alpha(L)=0.0001399 \ 21; \ \alpha(M)=2.73\times10^{-5} \ 4; \ \alpha(N+)=5.57\times10^{-6} \ 8$
		2129.6 3	1.73 10	0.0	0+	E2		6.48×10 ⁻⁴	$\alpha(N)=5.13\times10^{-6} \ 8; \ \alpha(O)=4.39\times10^{-7} \ 7$ B(E2)(W.u.)=0.012 +4-8 $\alpha(K)=0.000250 \ 4; \ \alpha(L)=2.93\times10^{-5} \ 5; \ \alpha(M)=5.70\times10^{-6} \ 8; \ \alpha(N+)=0.000363 \ 5$ $\alpha(N)=1.075\times10^{-6} \ 15; \ \alpha(O)=9.44\times10^{-8} \ 14; \ \alpha(PE)=0.000362 \ 5$
2192.17	0+	1060.42 2	100	1131.739	2+	E2		1.13×10 ⁻³	Mult.: from $(n,n'\gamma)$ and RUL of relevant levels. $\alpha(K)=0.000983 \ 14; \ \alpha(L)=0.0001201 \ 17; \ \alpha(M)=2.35\times10^{-5}$ $4; \ \alpha(N+)=4.78\times10^{-6} \ 7$ $\alpha(N)=4.40\times10^{-6} \ 7; \ \alpha(O)=3.77\times10^{-7} \ 6$ Mult : $\gamma(\theta)$ in $(n,n'\gamma)$ and RUL.
2204.620	(5 ⁻)	102.91 [‡] 2	100 5	2101.711	4+	E1		0.1672	B(E1)(W.u.)=4.4×10 ⁻⁷ 11 α (K)=0.1447 21; α (L)=0.0183 3; α (M)=0.00356 5; α (N+)=0.000706 10 α (N)=0.000656 10; α (O)=4.96×10 ⁻⁵ 7 Mult : from α (K)exp=0 15 3 in ¹²⁴ In β^- decay (3.7 s)
		1072.88 [‡] 2	92 10	1131.739	2+	[E3]		0.00226	B(E3)(W.u.)=1.3 4 $\alpha(K)=0.00194$ 3; $\alpha(L)=0.000255$ 4; $\alpha(M)=5.02\times10^{-5}$ 7; $\alpha(N+)=1.017\times10^{-5}$ 15 $\alpha(N)=9.39\times10^{-6}$ 14; $\alpha(O)=7.83\times10^{-7}$ 11 I_{γ} : weighted av of 84 7 from (n,n') and 104 9 from ¹²⁴ In
2221.75	4+	1089.97 <i>5</i>	100	1131.739	2+	E2		1.07×10 ⁻³	$β^-$ decay (3.7 s). B(E2)(W.u.)=11 +4-11 α(K)=0.000926 13; α(L)=0.0001129 16; α(M)=2.20×10 ⁻⁵ 3; α(N+)=4.50×10 ⁻⁶ 7 α(N)=4.14×10 ⁻⁶ 6; α(O)=3.55×10 ⁻⁷ 5
2325.01	(7 ⁻)	120.38 [‡] 3	100	2204.620	(5 ⁻)	E2		0.826	$B(E2)(W.u.)=0.107 \ 18$

 ∞

 $^{124}_{50}{
m Sn}_{74}$ -8

L

						Adopted	Levels, Gar	<mark>mmas</mark> (continue	bd)
						2	$\gamma(^{124}\text{Sn})$ (co	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{b}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}	Comments
		1004 0# 5	100	1101 700					$\begin{aligned} &\alpha(\text{K}) = 0.628 \ 9; \ \alpha(\text{L}) = 0.1600 \ 23; \ \alpha(\text{M}) = 0.0324 \ 5; \\ &\alpha(\text{N}+) = 0.00606 \ 9 \\ &\alpha(\text{N}) = 0.00578 \ 9; \ \alpha(\text{O}) = 0.000280 \ 4 \\ &\text{Mult.: from } \alpha(\text{K}) \text{exp} = 0.64 \ 13 \text{ in } ^{124} \text{In } \beta^- \text{ decay } (3.7 \text{ s}). \end{aligned}$
2366.5 2426.316	2+	1234.8" 5 1294.54 2	53 6	1131.739	2+ 2+	M1+E2	-0.21 2	8.97×10 ⁻⁴	B(M1)(W.u.)=0.00962 8; B(E2)(W.u.)=0.18 4 α (K)=0.000766 11; α (L)=9.08×10 ⁻⁵ 13; α (M)=1.770×10 ⁻⁵ 25; α (N+)=2.34×10 ⁻⁵ 4 α (N)=3.34×10 ⁻⁶ 5; α (O)=2.95×10 ⁻⁷ 5; α (IPF)=1.97×10 ⁻⁵ 3
		2426.36 3	100 8	0.0	0+	E2		7.32×10 ⁻⁴	B(E2)(W.u.)=0.34 +11-20 α (K)=0.000198 3; α (L)=2.31×10 ⁻⁵ 4; α (M)=4.50×10 ⁻⁶ 7; α (N+)=0.000507 7 α (N)=8.48×10 ⁻⁷ 12; α (O)=7.46×10 ⁻⁸ 11; α (IPF)=0.000506 7
2454.34	6+	129.3 ^{&} 3	8.2 12	2325.01	(7 ⁻)				
		249.72 [∞] 2	100 5	2204.620	(5 ⁻)	E1(+M2)	+0.05 3	0.0145 9	$\alpha(K)=0.0126 \ 8; \ \alpha(L)=0.00155 \ 11; \ \alpha(M)=0.000302 \ 22; \\ \alpha(N+)=6.1\times10^{-5} \ 5 \\ \alpha(N)=5.6\times10^{-5} \ 4; \ \alpha(Q)=4.6\times10^{-6} \ 4$
2568.15	6-	243.13 [‡] 3	50 6	2325.01	(7-)	M1(+E2)	+0.01 3	0.0494	$\alpha(K)=0.0428 \ 6; \ \alpha(L)=0.00534 \ 8; \ \alpha(M)=0.001046 \ 15; \\ \alpha(N+)=0.000214 \ 3 \\ \alpha(N)=0.000197 \ 3; \ \alpha(O)=1.716\times10^{-5} \ 24 \\ I_{\gamma}: \ weighted av of \ 47 \ 3 \ from \ (n,n'\gamma) \ and \ 62 \ 6 \ from \ ^{124}In \\ \beta^{-} \ decay \ (3.11 \ s). \\ Mult.: \ from \ \alpha(K)exp=0.042 \ 13 \ in \ ^{124}In \ \beta^{-} \ decay \ (3.7 \ s). $
		363.53 [‡] 3	100 7	2204.620	(5 ⁻)	M1(+E2)	+0.01 2	0.01750	$\alpha(K)=0.01519\ 22;\ \alpha(L)=0.00187\ 3;\ \alpha(M)=0.000366\ 6;\alpha(N+)=7.49\times10^{-5}\ 11\alpha(N)=6.89\times10^{-5}\ 10;\ \alpha(O)=6.03\times10^{-6}\ 9Mult.:\ from\ \alpha(K)exp=0.030\ 9\ in\ ^{124} In\ \beta^{-}\ decay\ (3.7\ s).$
2578.44	8(+)	253.43 [‡] 3	100	2325.01	(7 ⁻)	D+Q	+0.09 5		
2602.495	3-	1470.71 2	100	1131.739	2+	E1+M2	+0.05 2	4.84×10 ⁻⁴ 8	B(E1)(W.u.)=0.00125 <i>11</i> ; B(M2)(W.u.)=7 6 α (K)=0.000242 5; α (L)=2.81×10 ⁻⁵ 5; α (M)=5.47×10 ⁻⁶ <i>10</i> ; α (N+)=0.000209 3 α (N)=1.030×10 ⁻⁶ <i>19</i> ; α (O)=9.00×10 ⁻⁸ <i>16</i> ; α (IPF)=0.000208 3
2614.45	4-	409.83 ^{&} 2	100	2204.620	(5 ⁻)	M1(+E2)	+0.02 2	0.01295	α (K)=0.01125 <i>16</i> ; α (L)=0.001379 <i>20</i> ; α (M)=0.000270 <i>4</i> ; α (N+)=5.52×10 ⁻⁵ <i>8</i> α (N)=5.08×10 ⁻⁵ <i>8</i> : α (Q)=4.45×10 ⁻⁶ <i>7</i>
2656.6	(10+)	78.2 5	100	2578.44	8(+)	E2		3.83 11	B(E2)(W.u.)=0.024 3 α (K)=2.53 7; α (L)=1.04 4; α (M)=0.214 7;

From ENSDF

				<u>)</u>					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{b}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}	Comments
2688.50	0+	558.81 12	28.2 13	2129.596	2+	E2			α(N+)=0.0390 13 α(N)=0.0376 13; α(O)=0.00140 4 $ E_{\gamma},Mult.: from 124Sn IT decay. $ Mult.: $γ(θ)$ in $(n,n'γ)$ and RUL.
		1556.77 ^{&} 5	100.0 13	1131.739	2^{+}				
2701.78	5-	133.52 ^{&} 13	9.5 8	2568.15	6-				
		497.16 ^{&} 2	100 8	2204.620	(5 ⁻)	M1(+E2)	-0.01 4	0.00804	$\alpha(K)=0.00699 \ 10; \ \alpha(L)=0.000851 \ 12; \ \alpha(M)=0.0001664$ 24; $\alpha(N+)=3.41\times10^{-5} \ 5$ $\alpha(N)=3.13\times10^{-5} \ 5; \ \alpha(O)=2.75\times10^{-6} \ 4$
2703.187	2^{+}	573.89 12	12.0 13	2129.596	2^{+}	D+Q	-0.4 +4-8		
		601.4 ^{&} 2	4.4 5	2101.711	4+	[E2]		0.00444	B(E2)(W.u.)=17 +5-17 α (K)=0.00382 6; α (L)=0.000500 7; α (M)=9.82×10 ⁻⁵ 14; α (N+)=1.98×10 ⁻⁵ 3
		1571.43 2	100.0 13	1131.739	2+	M1+E2	-0.27 4	6.79×10 ⁻⁴	$\begin{aligned} &\alpha(N) = 1.83 \times 10^{-5} \ 3; \ \alpha(O) = 1.484 \times 10^{-6} \ 21 \\ &B(M1)(W.u.) = 0.01046 \ 21; \ B(E2)(W.u.) = 0.22 \ 6 \\ &\alpha(K) = 0.000505 \ 8; \ \alpha(L) = 5.96 \times 10^{-5} \ 9; \ \alpha(M) = 1.161 \times 10^{-5} \\ &17; \ \alpha(N+) = 0.0001029 \ 15 \end{aligned}$
									α (N)=2.19×10 ⁻⁶ 4; α (O)=1.94×10 ⁻⁷ 3; α (IPF)=0.0001006 15
		2703.31 ^{&} 8	21.3 14	0.0	0+	E2		8.22×10 ⁻⁴	B(E2)(W.u.)=0.046 +14-5 α (K)=0.0001639 23; α (L)=1.91×10 ⁻⁵ 3; α (M)=3.71×10 ⁻⁶ 6; α (N+)=0.000635 9 α (N)=7.00×10 ⁻⁷ 10; α (O)=6.17×10 ⁻⁸ 9; α (IPF)=0.000634 9 Mult.: from (n,n' γ) and RUL of relevant levels.
									E_{γ} : there is an unplaced 2699.6 4 γ in β ⁻ decay with $I_{\gamma}=22$ 2. It may correspond to 2703γ from (n,n'γ).
2753.05	4-	150.3 ^{&} 2	2.6 3	2602.495	3-	(M1+E2)		0.28 10	$\alpha(K)=0.23 \ 8; \ \alpha(L)=0.042 \ 22; \ \alpha(M)=0.008 \ 5; \ \alpha(N+)=0.0016 \ 9 \ \alpha(N)=0.0015 \ 8; \ \alpha(O)=9.E-5 \ 4 \ Mult.: from (n,n'\gamma) and \ \pi's of relevant levels. \delta: -0.02 \ 20 \ or \ -4 \ +18-3.$
		548.43 ^{&} 2	100 8	2204.620	(5 ⁻)	M1+E2	-0.46 3	0.00622	α (K)=0.00540 8; α (L)=0.000666 10; α (M)=0.0001302 19; α (N+)=2.66×10 ⁻⁵ 4 α (N)=2.45×10 ⁻⁵ 4: α (O)=2.12×10 ⁻⁶ 3
2819.3	(6 ⁺)	717.6 5	100	2101.711	4+	E2			Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$ and RUL.
2836.58	3+	614.76 6	34.5 18	2221.75	4+	(M1+E2)		0.0045 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0039 \ 3; \ \alpha(\mathbf{L}) = 0.000489 \ 20; \ \alpha(\mathbf{M}) = 9.6 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{N}+) = 1.95 \times 10^{-5} \ 9 \\ &\alpha(\mathbf{N}) = 1.79 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 1.52 \times 10^{-6} \ 13 \\ &\mathbf{I}_{\gamma}: \text{ other: } 32.0 \ 25 \text{ in } ^{124} \text{ In } \beta^{-} \text{ decay } (3.11 \text{ s}). \end{aligned}$

L

						Adopte	d Levels, Gam	mas (continued)	
							$\gamma(^{124}\text{Sn})$ (con	tinued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{b}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}	Comments
2836.58	3+	706.98 <i>4</i>	100.0 17	2129.596	2+	M1+E2	+2.1 3	0.00302	Mult.: from $(n,n'\gamma)$ and π 's of relevant levels. δ : +0.4 2 or +1.9 10. B(M1)(W.u.)<0.028; B(E2)(W.u.)<1.5×10 ² α (K)=0.00261 5; α (L)=0.000330 5; α (M)=6.45×10 ⁻⁵ 10; α (N+)=1.310×10 ⁻⁵ 21
		735.34 ^{&} 18	18.6 <i>17</i>	2101.711	4+	(M1+E2)	-0.94 10	0.00292 5	$\alpha(N)=1.209\times10^{-5} \ 19; \ \alpha(O)=1.013\times10^{-6} \ 18$ $\alpha(K)=0.00253 \ 5; \ \alpha(L)=0.000312 \ 5; \ \alpha(M)=6.10\times10^{-5}$ $10; \ \alpha(N+)=1.244\times10^{-5} \ 20$ $\alpha(N)=1.146\times10^{-5} \ 19; \ \alpha(O)=9.84\times10^{-7} \ 18$
		1704.87 <i>11</i>	27.8 10	1131.739	2+	(M1+E2)	+1.5 3	6.11×10 ⁻⁴ 10	B(M1)(W.u.)<0.012?; B(E2)(W.u.)<14? Mult.: from (n,n' γ) and π 's of relevant levels. α (K)=0.000393 8; α (L)=4.65×10 ⁻⁵ 9; α (M)=9.05×10 ⁻⁶ 18; α (N+)=0.0001619 25 α (N)=1.71×10 ⁻⁶ 4; α (O)=1.50×10 ⁻⁷ 3; α (IPF)=0.0001600 25 B(M1)(W.u.)<0.0012?; B(E2)(W.u.)<0.58?
2855.13	6-	650.51 ^{&} 4	100	2204.620	(5 ⁻)	M1(+E2)	+0.02 3	0.00421	I _γ : other: 45 4 in ¹² ln β decay (3.11 s). Mult.: from (n,n'γ) and π's of relevant levels. $\alpha(K)=0.00366 6; \alpha(L)=0.000443 7; \alpha(M)=8.65\times10^{-5}$ 13; $\alpha(N+)=1.773\times10^{-5} 25$ (N) 1 (20) 10 ⁻⁵ 25
2875.37	2+	1743.62 4	100 8	1131.739	2+	M1+E2	+5.6 +11-8	5.96×10 ⁻⁴	$\begin{aligned} \alpha(N) &= 1.630 \times 10^{-5} 23; \ \alpha(O) &= 1.434 \times 10^{-5} 20 \\ B(M1)(W.u.) &= 0.0009 \ 4; \ B(E2)(W.u.) &= 6.29 \ 8 \\ \alpha(K) &= 0.000363 \ 6; \ \alpha(L) &= 4.29 \times 10^{-5} \ 6; \ \alpha(M) &= 8.35 \times 10^{-6} \\ 12; \ \alpha(N+) &= 0.000182 \ 3 \\ \alpha(N) &= 1.573 \times 10^{-6} \ 23; \ \alpha(O) &= 1.376 \times 10^{-7} \ 20; \\ \alpha(IPF) &= 0.000180 \ 3 \\ S_{10} \ \alpha(FF) &= 0.000180 \ 3 \\ S_{10} \ \alpha(F$
		2875.8 ^{&} 4	13.3 13	0.0	0+	E2		8.80×10 ⁻⁴	B(E2)(W.u.)=0.071 +19-39 α (K)=0.0001474 21; α (L)=1.714×10 ⁻⁵ 24; α (M)=3.33×10 ⁻⁶ 5; α (N+)=0.000712 10 α (N)=6.28×10 ⁻⁷ 9; α (O)=5.54×10 ⁻⁸ 8; α (IPF)=0.000712 10 Mult : from (n n'a) and π 's of relevant levels
2878.65	2+	656.8 5 686.2 2 749.05 ^{&} 10 776 7 ^{&} 2	8.2 5 13.4 6 23.1 22 13.1 6	2221.75 2192.17 2129.596 2101.711	4^+ 0^+ 2^+ 4^+	E2 D,D+Q Q			Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$ and RUL.
		1746.94 6	100.0 10	1131.739	2+	≪ M1+E2	+0.67 8	6.17×10 ⁻⁴ 24	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000384\ 25;\ \alpha(\mathbf{L}) = 4.5 \times 10^{-5}\ 3;\ \alpha(\mathbf{M}) = 8.8 \times 10^{-6}\\ & 6;\ \alpha(\mathbf{N}+) = 0.000178\ 6\\ &\alpha(\mathbf{N}) = 1.66 \times 10^{-6}\ 11;\ \alpha(\mathbf{O}) = 1.46 \times 10^{-7}\ 11;\\ &\alpha(\mathbf{IPF}) = 0.000177\ 6\\ &\delta:\ +0.67\ 8\ \text{if}\ J^{\pi} = 2^+\ \text{or}\ +2.6\ 4\ \text{if}\ J^{\pi} = 3^+. \end{aligned}$

$\gamma(^{124}Sn)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{b}	E_f	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^d	Comments
2878.65 2958.11	2+ 4+	2878.6 5 531.1 ^{&} 2 737.4 5	4.7 <i>4</i> 26 <i>3</i> 43 6	0.0 2426.316 2221.75	0^+ 2^+ 4^+	E2 (Q) D+O	+0.6.9		Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$ and RUL.
		856.55 ^{&} 13	35.7 26	2101.711	4+	(M1+E2)		0.00203 20	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00176 \ 18; \ \alpha(\mathbf{L}) = 0.000215 \ 18; \\ &\alpha(\mathbf{M}) = 4.2 \times 10^{-5} \ 4; \ \alpha(\mathbf{N}+) = 8.6 \times 10^{-6} \ 8 \\ &\alpha(\mathbf{N}) = 7.9 \times 10^{-6} \ 7; \ \alpha(\mathbf{O}) = 6.8 \times 10^{-7} \ 7 \\ &\delta: \ -1.0 \ 4 \ \text{or} \ -6 \ +18 - 14. \end{aligned}$
		1826.38 ^{&} 7	100 5	1131.739	2+				
2988.03	3-	234.95 ^{&} 7	16.5 <i>11</i>	2753.05	4-	(M1+E2)	-0.07 11	0.0542 11	α(K)=0.0470 9; α(L)=0.00588 17; α(M)=0.00115 4; α(N+)=0.000235 7 α(N)=0.000217 6; α(O)=1.88×10-5 4 B(M1)(W.u.)<0.28?; B(E2)(W.u.)<72? Mult.: from (n,n'γ) and RUL of relevant levels. δ: preferred value. Other: $-4 + 2-8$.
		373.75 ^{&} 13	10.5 10	2614.45	4-	(M1+E2)		0.0170 7	α(K)=0.0145 5; α(L)=0.00195 21; α(M)=0.00038 5; α(N+)=7.7×10-5 8 α(N)=7.1×10-5 8; α(O)=5.74×10-6 15 Mult.: from (n,n'γ) and RUL of relevant levels. δ: -0.01 12 or -8 +4-92.
		385.38 ^{&} 5	53 4	2602.495	3-	M1+E2	+1.7 3	0.01577 24	$\alpha(K)=0.01347 \ 20; \ \alpha(L)=0.00186 \ 4; \ \alpha(M)=0.000367 \\ 8; \ \alpha(N+)=7.33\times10^{-5} \ 14 \\ \alpha(N)=6.80\times10^{-5} \ 14; \ \alpha(O)=5.30\times10^{-6} \ 8 \\ B(M1)(W.u.)<0.066; \ B(E2)(W.u.)<7.8\times10^{2} \\ \end{array}$
		1856.33 ^{&} 3	100 8	1131.739	2+	E1(+M2)	-0.02 2	6.87×10 ⁻⁴	$\alpha(K)=0.0001639\ 24;\ \alpha(L)=1.90\times10^{-5}\ 3;\alpha(M)=3.68\times10^{-6}\ 6;\ \alpha(N+)=0.000501\ 7\alpha(N)=6.94\times10^{-7}\ 11;\ \alpha(O)=6.08\times10^{-8}\ 9;\alpha(IPF)=0.000500\ 7$
2011.1	$(\overline{a}, 0, 0)$	100 7@ 0	100	0570 44	$o(\pm)$				$B(E1)(W.u.) < 4.3 \times 10^{-5?}; B(M2)(W.u.) < 0.068?$
3011.1	(7,8,9)	432.7 3	100	25/8.44	8 ⁽¹⁾				
3109.5 2142.86	1,2'	3109.5" 3	100 8	0.0	0 ⁺	[E2]		0.00291	$P(E2)(W_{11}) = 2.7 \times 10^2 + 14.21$
5145.80	4	/1/.08 8	100 8	2420.310	2	[E2]		0.00281	$\begin{aligned} &\alpha(K) = 0.00243 \ 4; \ \alpha(L) = 0.000310 \ 5; \\ &\alpha(M) = 6.07 \times 10^{-5} \ 9; \ \alpha(N+) = 1.228 \times 10^{-5} \ 18 \\ &\alpha(N) = 1.134 \times 10^{-5} \ 16; \ \alpha(O) = 9.39 \times 10^{-7} \ 14 \end{aligned}$
		2011.96 ^{&} 8	100 8	1131.739	2+	[E2]		6.23×10 ⁻⁴	B(E2)(W.u.)=2.1 +8-18 α (K)=0.000277 4; α (L)=3.26×10 ⁻⁵ 5; α (M)=6.34×10 ⁻⁶ 9; α (N+)=0.000307 5 α (N)=1.194×10 ⁻⁶ 17; α (O)=1.047×10 ⁻⁷ 15; α (IPF)=0.000306 5
3214.36	2^{+}	2082.66 18	17.4 17	1131.739	2+	M1+E2	+1.2 5	6.44×10 ⁻⁴ 10	B(M1)(W.u.)=0.006 4; B(E2)(W.u.)=1.4 6

12

						Adopted	L <mark>evels, G</mark> a	<mark>mmas</mark> (continued	d)		
						2	√(¹²⁴ Sn) (c	continued)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{b}	E_f	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}	Comments		
3214.36	2+	3214.29 <i>12</i>	100 8	0.0	0+	E2		9.97×10 ⁻⁴	$\begin{aligned} &\alpha(\text{K}) = 0.000270 \ 8; \ \alpha(\text{L}) = 3.17 \times 10^{-5} \ 9; \ \alpha(\text{M}) = 6.18 \times 10^{-6} \\ &18; \ \alpha(\text{N}+) = 0.000336 \ 6 \\ &\alpha(\text{N}) = 1.16 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 1.03 \times 10^{-7} \ 4; \ \alpha(\text{IPF}) = 0.000335 \\ &6 \\ &\text{Mult.: from } (n,n'\gamma) \text{ and RUL of relevant levels.} \\ &\text{B}(\text{E2})(\text{W.u.}) = 1.5 \ 4 \\ &\alpha(\text{K}) = 0.0001221 \ 17; \ \alpha(\text{L}) = 1.416 \times 10^{-5} \ 20; \\ &\alpha(\text{M}) = 2.75 \times 10^{-6} \ 4; \ \alpha(\text{N}+) = 0.000858 \ 12 \\ &\alpha(\text{N}) = 5.19 \times 10^{-7} \ 8; \ \alpha(\text{O}) = 4.59 \times 10^{-8} \ 7; \ \alpha(\text{IPF}) = 0.000857 \\ &12 \end{aligned}$		
3227.95		1098.4 ^{&} 2 2096.22 ^{&} 16	67 <i>17</i> 100 8	2129.596 1131.739	2+ 2+						
3240.36 3264.49	(7,8,9) 2 ⁺	915.35 ^w 20 3264.44 11	100 100	2325.01 0.0	(7 ⁻) 0 ⁺	E2		1.01×10 ⁻³	B(E2)(W.u.)=0.22 +16-12 α (K)=0.0001190 17; α (L)=1.380×10 ⁻⁵ 20; α (M)=2.68×10 ⁻⁶ 4; α (N+)=0.000879 13 α (N)=5.06×10 ⁻⁷ 7; α (O)=4.47×10 ⁻⁸ 7; α (IPF)=0.000878 13		
3267.13 3293.42	1,2,3 2,3	2135.37 ^{&} 8 1163.82 9	100 100 <i>13</i>	1131.739 2129.596	2^+ 2^+	D,D+Q D,D+Q					
		2161.7 3	38 4	1131.739	2+						
3312.99?	2,3,4	1183.39 [°] 6	100	2129.596	2+						
3330.41	2,3	2198.65 ^{&} 9	100	1131.739	2+						
3333.54	2(+)	630.35° 14	207 21	2703.187	2+	D+Q			δ : +2.3 12 or 0.0 3.		
		1204.1" <i>3</i> 2201.79 <i>13</i>	33 7 100 <i>1</i> 2	2129.596 1131.739	2+ 2+	(M1+E2)	+1.1 6	6.72×10 ⁻⁴ 11	$\alpha(K)=0.000244 \ 8; \ \alpha(L)=2.86\times10^{-5} \ 9; \ \alpha(M)=5.57\times10^{-6}$ $18; \ \alpha(N+)=0.000393 \ 7$ $\alpha(N)=1.05\times10^{-6} \ 4; \ \alpha(O)=9.3\times10^{-8} \ 4; \ \alpha(IPF)=0.000392 \ 7$		
		3333 3 3	106 11	0.0	0^{+}	(0)			I_{γ} : other: 38 / In I_{γ} in β decay (3.12 s).		
3346.46	(3.4)	$1244.71^{\&}$ 6	100.8	2101.711	4 ⁺						
20.000	(0,1)	2215.0 & 2	29.3	1131.739	2 ⁺						
3362.3	(7.8.9)	784.0 [@] 6	70 10	2578.44	- 8 ⁽⁺⁾				I_{α} ; from ¹²⁴ In β^- decay (3.7 s).		
	(.,0,2)	1037.3 [@] 3	100 10	2325.01	(7^{-})				I_{ν} : from ¹²⁴ In β^- decay (3.7 s).		
3363.59	3(+)	1261.30 ^{&} 16	37 4	2101.711	4+	(M1+E2)	-1.1 6	0.00087 6	$\alpha(K)=0.00074 5; \ \alpha(L)=8.9\times10^{-5} 6; \ \alpha(M)=1.73\times10^{-5} 10; \alpha(N+)=1.87\times10^{-5} 5 \alpha(N)=3.26\times10^{-6} 20; \ \alpha(O)=2.85\times10^{-7} 20; \alpha(IPF)=1.52\times10^{-5} 7$		

L

						Adopted L	evels, Gamma	s (continued)					
	γ ⁽¹²⁴ Sn) (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{b}	E_f	\mathbf{J}_{f}^{π}	Mult. ^b	δ^{b}	α^d	Comments				
3363.59	3(+)	2231.97 ^{&} 8	100 8	1131.739	2+	D(+Q)	-0.01 3						
3396.5	1,2+	3396.5 [#] 8	100	0.0 0	0+								
3410.14	1	1280.37 ^{&} 15	61 <i>6</i>	2129.596	2+								
		3410.4 <mark>&</mark> 2	100 9	0.0	0+	D,D+Q							
3490.18	1-	3490.13 ^{&} 14	100	0.0 (0+	E1		1.52×10 ⁻³	$\alpha(K)=6.47\times10^{-5} \ 9; \ \alpha(L)=7.42\times10^{-6} \ 11; \\ \alpha(M)=1.440\times10^{-6} \ 21; \ \alpha(N+)=0.001447 \ 21 \\ \alpha(N)=2.72\times10^{-7} \ 4; \ \alpha(O)=2.39\times10^{-8} \ 4; \\ \alpha(IPF)=0.001447 \ 21 \\ Mult.: \ from \ (\gamma,\gamma').$				
3498.58	1,2,3	1369.2 <mark>&</mark> 2	62 6	2129.596	2+								
		2366.6 ^{&} 2	100 9	1131.739	2+	D,D+Q							
3509.15	3(+)	1379.58 ^{&} 9	100 8	2129.596 2	2+	(M1+E2)	+2.4 4	7.12×10 ⁻⁴ 12	$\alpha(K)=0.000584 \ 10; \ \alpha(L)=6.98\times10^{-5} \ 12; \ \alpha(M)=1.361\times10^{-5} \ 23; \ \alpha(N+)=4.46\times10^{-5} \ 7 \ \alpha(N)=2.56\times10^{-6} \ 5; \ \alpha(O)=2.23\times10^{-7} \ 4; \ \alpha(IPF)=4.19\times10^{-5} \ 7 \ \delta; \ preferred value. \ Other: +0.68 \ 8.$				
		2377.2 ^{&} 2	55 5	1131.739	2+	(M1+E2)	+10 +90-5	7.17×10 ⁻⁴	$\alpha(K)=0.000205 \ 3; \ \alpha(L)=2.40\times10^{-5} \ 4; \\ \alpha(M)=4.67\times10^{-6} \ 7; \ \alpha(N+)=0.000483 \ 7 \\ \alpha(N)=8.80\times10^{-7} \ 13; \ \alpha(O)=7.75\times10^{-8} \ 11; \\ \alpha(IPF)=0.000482 \ 7 \\ \delta; \ preferred value, \ Other; \ +0.32 \ 11.$				
3524.02	$(7^{-}, 8^{-})$	955.90 [@] 10	100 8	2568.15	6-				I_{γ} : from ¹²⁴ In β^- decay (3.7 s).				
		1198.97 [@] 10	716	2325.01 ((7 ⁻)				I_{γ} : from ¹²⁴ In β^- decay (3.7 s).				
3551.53	(3 ⁻)	1330.0 3	100 9	2221.75	4+								
		1421.7 & 2	56 6	2129.596 2	2+								
		1450.1 3	86 10	2101.711 4	4+	(D,D+Q)			I _{γ} : weighted av of 79 8 from (n,n' γ) and 100 <i>11</i> from ¹²⁴ In β^- decay (3.12 s).				
		2419.77 [#] 20	220 20	1131.739 2	2+				I_{γ} : from ¹²⁴ Sn β^- decay (3.12 s).				
3583.66	2+	355.75 [°] 12	71 7	3227.95		(Q)			, , , , , , , , , , , , , , , , , , ,				
		1453.5 ^{x} 3	100 8	2129.596 2	2+	(M1+E2)		0.00070 5	$\alpha(K)=0.00056 5; \alpha(L)=6.6\times10^{-5} 5; \alpha(M)=1.29\times10^{-5}$ 10; $\alpha(N+)=6.5\times10^{-5} 3$ $\alpha(N)=2.43\times10^{-6} 19; \alpha(O)=2.13\times10^{-7} 19;$ $\alpha(IPF)=6.2\times10^{-5} 3$ Mult.: from $(n,n'\gamma)$ and RUL of relevant levels. δ : -20 31 or -0.4 3.				
		2452.3 ^{&} 3	51 5	1131.739 2	2+	(M1+E2)		7.43×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000200 \ 7; \ \alpha(\mathbf{L}) = 2.34 \times 10^{-5} \ 8; \\ &\alpha(\mathbf{M}) = 4.55 \times 10^{-6} \ 16; \ \alpha(\mathbf{N}+) = 0.000515 \ 9 \\ &\alpha(\mathbf{N}) = 8.6 \times 10^{-7} \ 3; \ \alpha(\mathbf{O}) = 7.6 \times 10^{-8} \ 3; \end{aligned}$				

 $^{124}_{50}{
m Sn}_{74}$ -14

					Ado	pted Levels	s, Gammas (co	ontinued)			
γ ⁽¹²⁴ Sn) (continued)											
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{b}	E_f	\mathbf{J}_f^{π}	Mult. ^b	α^{d}	Comments			
								α (IPF)=0.000514 9 Mult.: from (n,n' γ) and RUL of relevant levels. δ : -6 -15 or -0.5 3.			
3583.66	2+	3583.6 4	69 7	0.0	0+	(E2)	1.12×10 ⁻³	$\alpha(K)=0.0001020 \ 15; \ \alpha(L)=1.180\times10^{-5} \ 17; \ \alpha(M)=2.29\times10^{-6} \ 4; \ \alpha(N+)=0.001004 \ 14 \ \alpha(N)=4.33\times10^{-7} \ 6; \ \alpha(O)=3.83\times10^{-8} \ 6; \ \alpha(IPF)=0.001004 \ 14 \ Mult.; \ from (n,n'\gamma) and RUL of relevant levels.$			
3603.86	2,3	1177.3 ^{&} 3	27 4	2426.316	2+						
		2472.2 ^{&} 2	100 8	1131.739	2+						
3643.4	(7,8,9)	403.01 [@] 20	100	3240.36	(7,8,9)						
3655.20	2.3	952.4 ^{&e} 2		2703.187	2+						
	·-	1433.3 ^{&} 3	80 11	2221.75	4+						
		1525.6 2	100 13	2129.596	2+	D,D+Q					
		1553.6 ^{&} 3	48 9	2101.711	4+						
3684.91	(7-)	1106.9 [@] 6	2.6 5	2578.44	8(+)						
		1116.77 [@] 10	40 4	2568.15	6-						
		1359.86 [@] 10	100 8	2325.01	(7 ⁻)						
3697.3	1	2565.4 <mark>&</mark> 6	17 4	1131.739	2+						
		3697.3 ^{&} 4	100 9	0.0	0^{+}	D		Mult.: from (γ, γ') .			
3710.39	2+	2578.6 ^{&} 3	29 4	1131.739	2+						
		3710.34 24	100 9	0.0	0+	E2	1.16×10 ⁻³	B(E2)(W.u.)=0.6 +3-2 α (K)=9.63×10 ⁻⁵ 14; α (L)=1.114×10 ⁻⁵ 16; α (M)=2.16×10 ⁻⁶ 3; α (N+)=0.001055 15 α (N)=4.08×10 ⁻⁷ 6; α (O)=3.61×10 ⁻⁸ 5; α (IPF)=0.001055 15			
3724.7	1,2+	2593.1 4	100 21	1131.739	2+			., ,			
		3724.5 [#] 4	95 21	0.0	0^{+}						
3741.62	$(2)^{+}$	1138.4 [#] 3 1519.53 25	47 <i>15</i> 100 <i>13</i>	2602.495 2221.75	3 ⁻ 4 ⁺						
		1611.3 [#] 4	36 <i>3</i>	2129.596	2+						
		1640.46 <i>19</i>	161 15	2101.711	4+						
		2609.89 [#] 15	60 <i>6</i>	1131.739	2+						
3760.27	$(0^+, 1, 2)$	2628.50 [#] 20	100	1131.739	2+						
3761.83	2+	2630.3 ^{&} 4	41 5	1131.739	2+	D,D+Q					
		3761.68 24	100 9	0.0	0+	E2	1.18×10 ⁻³	B(E2)(W.u.)=0.29 +18-3 α (K)=9.42×10 ⁻⁵ 14; α (L)=1.089×10 ⁻⁵ 16; α (M)=2.12×10 ⁻⁶ 3; α (N+)=0.001076 15 α (N)=3.99×10 ⁻⁷ 6; α (O)=3.53×10 ⁻⁸ 5: α (IPF)=0.001075 15			
3765.14	(7 ⁻ ,8 ⁻ ,9 ⁻)	1186.6 [@] 4	8.7 22	2578.44	8(+)			, , , , , , , , , , , , , , , , , , ,			

 $^{124}_{50}{
m Sn}_{74}$ -15

From ENSDF

 $^{124}_{50}{
m Sn}_{74}$ -15

$\gamma(^{124}$ Sn) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{b}	E_f	\mathbf{J}_{f}^{π}	Mult. ^b
3765.14	(7 ⁻ ,8 ⁻ ,9 ⁻)	1440.13 [@] 10	100 9	2325.01	(7 ⁻)	
3802.54	2,3	1673.3 ^{&} 3	18 <i>3</i>	2129.596	2+	
		2670.6 ^{&} 2	100 9	1131.739	2^{+}	
3809.71	(7,8,9)	1484.69 [@] 20	100	2325.01	(7-)	
3831.4	2,3,4	1702.6 ^{&} 4	49 5	2129.596	2+	
		2698.9 ^{&} 4	100 9	1131.739	2+	Q
3834.3	1,2+	3834.2 [#] 7	100	0.0	0^{+}	
3864.26	1,2+	1734.69 [#] 20	68 7	2129.596	2+	
		2732.36 [#] 20	77 7	1131.739	2+	
		3864.4 3	100 9	0.0	0^{+}	
3888.0	$1,2^{+}$	3887.9 [#] 8	100	0.0	0^{+}	
3910.7	2+	3910.6 [#] 9	100	0.0	0^{+}	
3917.27	2^{+}	1042.12 [#] 15	27 2	2875.37	2^{+}	
		1214.26 [#] 20	14 <i>1</i>	2703.187	2+	
		1314.73 [#] 5	100 9	2602.495	3-	
		1490.9 [#] 4	4.2 4	2426.316	2+	
		1695.63 [#] 20	8.4 9	2221.75	4+	
		1787.71# 20	9.8 9	2129.596	2+	
		1815.3 [#] 3	4.2 9	2101.711	4+	
		3917.0 [#] 3	42 4	0.0	0^{+}	
3931.5	(7,8,9)	569.11 [@] 15	100	3362.3	(7,8,9)	
3963.6	1,2	2831.9 ^{&} 3	100 12	1131.739	2+	(D,D+Q)
		3963.0 ^{&} 6	94 10	0.0	0^{+}	
4043.8	1,2+	4043.7 [#] 5	100	0.0	0^{+}	
4074.4	2	2942.4 ^{&} 4	100 10	1131.739	2+	(D,D+Q)
		4075.3 & 8	85 9	0.0	0^{+}	(Q)
4094.2	2,3	2962.4 ^{&} 3	100	1131.739	2+	
4156.1	2+	3024.4 3	34 7	1131.739	2+	
		4155.8# 6	100 11	0.0	0+	
4208.1	2,3	3076.3° 3	100	1131.739	2^+	D
4219.2 4227 57	$1 1 2^+$	4219.1° 0 1352.11 <i>16</i>	100 12	0.0	$\frac{0}{2^+}$	D D D+0
7441.31	1,4	$4228 0^{\#} 4$	72 16	0.0	$\frac{2}{0^{+}}$	D,D⊤Q
4263.5	1	4263.4^{a} 6	12 10	0.0	0^{+}	D
4264.1	$1,2^{+}$	4264.0 [#] 3	100	0.0	0+	
4269.82	(4)	686.2 ^{&} 2	100 11	3583.66	2^{+}	

16

$^{124}_{50}\mathrm{Sn}_{74}$ -16

						Ado	pted Levels	s, Gammas (continued)
							γ (¹²⁴ S	n) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{b}	E_{f}	\mathbf{J}_f^{π}	Mult. ^b	α^{d}	Comments
4269.82	(4)	3137.8 ^{&} 5	52 6	1131.739	2^{+}			
4331.4	1.2+	4331.3 [#] 4	100	0.0	0^{+}			
4359 58	0^+ to 4^+	3227 8 2	100	1131 739	2^{+}			
4470.3	1 2+	4470.2 [#] 4	100	0.0	0+			
4529.9	1,2	4529 7 [#] 1	100	0.0	0+			
4328.8	1,2	4326.7 4	100	0.0	0			
4604.6	1,2	$4604.5^{"}$ /	100	0.0	0+			
4003.8	1	$4003.7^{a}0$		0.0	0^{+}	D		
5064.8	1	$5064.7^{a}.7$		0.0	0^{+}	D		
5842.6	1-	5842.5 ^{<i>a</i>} 7		0.0	0^{+}	E1 ^C	0.00229	$\alpha(K)=3.30\times10^{-5} 5; \ \alpha(L)=3.77\times10^{-6} 6; \ \alpha(M)=7.31\times10^{-7} 11; \ \alpha(N+)=0.00225 4$ $\alpha(N)=1.378\times10^{-7} 20; \ \alpha(O)=1.218\times10^{-8} 17; \ \alpha(IPE)=0.00225 4$
5869.8	(1)	5869.7 ^a 8		0.0	0^{+}	(D)		$u_{(1)}=1.570\times10$ 20, $u_{(0)}=1.210\times10$ 17, $u_{(11,1)}=0.00225$ 7
5902.7	1	5902.5 ^a 7		0.0	0^{+}	D		
5951.9	1	5951.7 ^a 7		0.0	0^{+}	D		
5968.6	1	5968.4 ^a 7		0.0	0^{+}	D		
6002.2	1	6002.0 ^{<i>a</i>} 7		0.0	0^{+}	D		
6129.2	1	6129.0 ^a 7		0.0	0^+	D		
6171.0	1	6170.8 ^a 12		0.0	0^{+}	D		
6184.2	1-	6184.0 ^a 6		0.0	0^{+}	E1 ^{<i>c</i>}		
6236.7	1	6236.5 ^{<i>a</i>} 7		0.0	0^{+}	D		
6287.3	1	6287.1^{u} 7		0.0	0^+	D		
6321.8	1	6321.6° /		0.0	0^{+}			
6369.3	1	6369.1° /		0.0	0^{+}	El		
0433.3 6467.7	1	6455.1° /		0.0	0^{+}	D D		
6503.4	1	6503.2^{a} 6		0.0	0^{+}	D		
6524.2	1-	$6524.0^{a}.5$		0.0	0^{+}	E1 ^C		
6548.7	1	6548.5 ^{<i>a</i>} 5		0.0	0^{+}	D		
6561.0	1-	6560.8 ^{<i>a</i>} 7		0.0	0^{+}	E1 ^C		
6566.0	1	6565.8 ^a 8		0.0	0^{+}	D		
6584.3	1-	6584.1 ^a 6		0.0	0^{+}	E1 ^C		
6600.0	1	6599.8 ^a 7		0.0	0^+	D		
6635.8	1-	6635.6 ^{<i>a</i>} 6		0.0	0^{+}	E1 ^c		
6678.1	1-	6677.9 ^{<i>a</i>} 7		0.0	0^+	E1 ^c		
6683.5	1-	6683.3 ^{<i>u</i>} 8		0.0	0^+	El		
6712.0	1 ⁻	$6/05.4^{\circ}8$		0.0	0^{+}			
0/13.8	1	$0/13.0^{\circ}/$		0.0	0+			
0722.3 6764 4	1 1	6764.2^{a}		0.0	0+	D F1 ^C		
	1	0704.2 0		0.0	0	11		

From ENSDF

 $^{124}_{50}\mathrm{Sn}_{74}$ -17

I

$\gamma(^{124}\text{Sn})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. ^b	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. <mark>b</mark>
6790.8	1-	6790.6 ^a 8	$0.0 0^+$	E1 ^C	7679.1	1	7678.8 ^a 14	$0.0 \ 0^+$	D
6808.2	$1^{(+)}$	6808.0 ^a 6	$0.0 \ 0^+$	(M1) ^C	7684.2	1-	7683.9 ^a 11	$0.0 \ 0^+$	E1 ^C
6847.3	1-	6847.1 ^a 8	$0.0 \ 0^+$	È1 ^C	7691.5	1	7691.2 ^a 7	$0.0 \ 0^+$	D
6902.3	1-	6902.1 ^{<i>a</i>} 8	$0.0 \ 0^+$	E1 ^C	7702.9	1	7702.6 ^a 9	$0.0 \ 0^+$	D
6928.4	(1)	6928.2 ^a 8	$0.0 \ 0^+$	(D)	7747.7	1-	7747.4 ^a 7	$0.0 \ 0^+$	E1 ^C
6939.1	1	6938.9 ^a 8	$0.0 \ 0^+$	D	7759.4	1-	7759.1 ^a 4	$0.0 \ 0^+$	E1 ^C
6947.7	1	6947.5 ^a 8	$0.0 \ 0^+$	D	7770.9	1	7770.6 ^a 6	$0.0 \ 0^+$	D
7018.2	1	7018.0 ^a 8	$0.0 \ 0^+$	D	7778.4	1	7778.1 ^a 9	$0.0 \ 0^+$	D
7032.7	1-	7032.5 ^a 7	$0.0 \ 0^+$	E1 ^C	7788.6	1	7788.3 ^a 5	$0.0 \ 0^+$	D
7062.4	1	7062.2 ^a 9	$0.0 \ 0^+$	D	7815.6	1-	7815.3 ^a 5	$0.0 \ 0^+$	E1 ^C
7071.3	1	7071.1 ^a 8	$0.0 \ 0^+$	D	7863.7	1-	7863.4 ^a 8	$0.0 \ 0^+$	E1 ^C
7086.7	1	7086.5 ^a 7	$0.0 \ 0^+$	D	7872.4	1	7872.1 ^a 6	$0.0 \ 0^+$	D
7125.9	1	7125.7 ^a 7	$0.0 \ 0^+$	D	7880.5	1-	7880.2 ^a 5	$0.0 \ 0^+$	E1 ^C
7234.0	1	7233.8 ^a 8	$0.0 \ 0^+$	D	7905.4	1	7905.1 ^{<i>a</i>} 12	$0.0 \ 0^+$	D
7258.8	1	7258.6 ^a 10	$0.0 \ 0^+$	D	7913.4	1	7913.1 ^a 8	$0.0 \ 0^+$	D
7295.7	1-	7295.5 ^a 7	$0.0 \ 0^+$	E1 ^C	7939.3	1	7939.0 ^a 12	$0.0 \ 0^+$	D
7308.7	1	7308.5 ^a 9	$0.0 \ 0^+$	D	7957.4	1	7957.1 ^a 9	$0.0 \ 0^+$	D
7326.4	1	7326.2 ^a 7	$0.0 \ 0^+$	D	7999.2	1-	7998.9 ^a 9	$0.0 \ 0^+$	E1 ^C
7337.7	1-	7337.5 ^a 7	$0.0 \ 0^+$	E1 ^C	8112.1	1	8111.8 ^{<i>a</i>} 16	$0.0 \ 0^+$	D
7344.6	1	7344.4 ^{<i>a</i>} 7	$0.0 0^+$	D	8119.1	1	8118.8 ^{<i>a</i>} 8	$0.0 \ 0^+$	D
7394.7	1-	7394.5 ^a 4	$0.0 0^+$	E1 ^C	8132.0	1	8131.7 ^{<i>a</i>} 15	$0.0 \ 0^+$	D
7487.8	1-	7487.6 ^{<i>a</i>} 7	$0.0 0^+$	E1 ^C	8162.5	1	8162.2 ^{<i>a</i>} 8	$0.0 \ 0^+$	D
7536.7	1-	7536.5 ^a 7	$0.0 0^+$	E1 ^C	8214.6	1	8214.3 ^{<i>a</i>} 12	$0.0 \ 0^+$	D
7551.1	1-	7550.9 ^a 6	$0.0 0^+$	E1 ^C	8229.2	1	8228.9 ^{<i>a</i>} 6	$0.0 0^+$	D
7567.1	1	7566.9 ^a 10	$0.0 0^+$	D	8257.2	1	8256.9 ^{<i>a</i>} 9	$0.0 \ 0^+$	D
7576.1	1-	7575.9 ^a 7	$0.0 \ 0^+$	E1 ^C	8270.1	$1^{(+)}$	8269.8 ^a 7	$0.0 \ 0^+$	(M1) ^C
7596.6	1-	7596.4 ^a 10	$0.0 \ 0^+$	E1 ^C	8350.4	1	8350.1 ^{<i>a</i>} 13	$0.0 \ 0^+$	D
7604.0	1-	7603.7 ^a 8	$0.0 \ 0^+$	E1 ^{<i>c</i>}	8376.5	1-	8376.2 ^a 11	$0.0 \ 0^+$	E1 ^C
7642.9	1-	7642.6 ^a 8	$0.0 0^+$	E1 ^C	8423.1	1	8422.8 ^a 7	$0.0 \ 0^+$	D
7666.3	1	7666.0 ^a 7	$0.0 \ 0^+$	D	8433.5	1	8433.2 ^{<i>a</i>} 10	$0.0 \ 0^+$	D

[†] From weighted av from $(n,n'\gamma)$ and ¹²⁴In β^- decay (3.12 s), unless otherwise noted. [‡] From weighted av from $(n,n'\gamma)$ and ¹²⁴In β^- decay (3.7 s). [#] From ¹²⁴In β^- decay (3.12 s); not observed in 3.7-s decay and in $(n,n'\gamma)$. [@] From ¹²⁴In β^- decay (3.7 s); not observed in 3.12-s decay and in $(n,n'\gamma)$.

& From $(n,n'\gamma)$.

18

^{*a*} From (γ, γ') . ^{*b*} From $(n, n'\gamma)$, unless otherwise noted.

 $\gamma(^{124}\text{Sn})$ (continued)

^{*c*} From (γ, γ') .

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Coincidence

 $^{124}_{50}{
m Sn}_{74}$

 $^{124}_{50}{\rm Sn}_{74}$

 $^{124}_{50}\mathrm{Sn}_{74}\text{-}25$

From ENSDF

 $^{124}_{50}\mathrm{Sn}_{74}\text{-}25$