(HI,xnγ) **2001Gi09**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. Katakura, Z. D. Wu	NDS 109, 1655 (2008)	1-Apr-2008

2001Gi09: ¹¹⁵In(¹²C,3n γ),E=57 MeV; Measured E γ , I γ , $\gamma\gamma$, ce, $\gamma\gamma$ (ce) coin,and $\gamma\gamma(\theta)$ (DCO), using an array of 14 EUROGAM II Compton-suppressed tapered coaxial Ge detectors.

1990Ko01: ¹¹⁵In(¹³C,4n γ) E=66 MeV; NORDBALL array of 15 Compton suppressed Ge and a multiplicity filter; measured E γ , $\gamma\gamma$ -coin, DCO ratios; proposed five bands.

1990Gi03: ¹¹⁵In(¹²C,3n γ) E=56 MeV; semi γ , $\gamma\gamma$ -coin, $\gamma(\theta)$; proposed four bands.

1993Ko25: supplements 1990Ko01; measured $\gamma(\theta)$, linear polarization.

2000Lu15,2001Lu02: ¹¹⁶Sn(¹¹B,3n γ),E=45 MeV, Measured E γ , $\gamma\gamma$, and $\gamma\gamma(\theta)$ (DCO) using an array comprised of 10 HPGe detectors, surrounded by BGO anti-Compton shield and one planar-type HPGe detector.

The level scheme is based on that proposed by 2001Gi09. 2000Lu15 and 2001Lu02 also proposed a level scheme with different low-lying part and different interband connection.

¹²⁴Cs Levels

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0	1+	30.8 s 5	Configuration= $\pi 1/2[420]\nu 1/2[411]$.
169.5 4	$(1)^{+}$		J^{π} : 2001Gi09 assigns 2 ⁺ . 2 ⁺ assignment seems to be conflict with strong β feed from 0 ⁺ in ¹²⁴ Cs decay.
189.00 10	$(2)^{+}$		
211.50 16	$(3)^+$		E2 γ to 1 ⁺ , γ to 2 ⁺ .
243.00 12	$(3)^+$		J^{π} : M1(+E2) γ to 2 ⁺ , γ to 1 ⁺ .
270.30 25	$(3)^{+}$		
282.70 14	$\frac{3}{(4)}$	(0	
301.10 10	(4) $(5)^+$	09 118 5	$1_{1/2}$: From Adopted Levels.
379.00.18	$(3)^+$		
397 90 [°] 18	$(5)^{-}$		
399.60 14	$(4)^+$		
427.6 5	(6+)		
441.50 12	4+		
462.8 8	$(7)^{+}$	6.3 s 2	%IT=100
0			$T_{1/2}$: From adopted level.
479.10 [@] 14	$(5)^{+}$		
491.6 [#] 4	(6^{+})		
495.0 [°] 3	(6) ⁻		
529.90 ^{<i>a</i>} 19	$(5)^{-}$		
530.2 ^{⁽⁰⁾} 4	(7^{+})		
565.8 ^{&} 3	(6 ⁻)		
586.6 ^b 4	(6 ⁻)		
588.7 [#] 4	(8^{+})		
648.9 ^a 3	$(7)^{-}$		
660.3 [@] 4	(9 ⁺)		
677.5 [°] 4	(7^{-})		
743.3 ^b 4	(7 ⁻)		
757.6 ^{&} 3	(8 ⁻)		
784.3 [#] 4	$(10)^{+}$		
796.8 ^c 4	(8-)		
974.2 ^{<i>a</i>} 3	(9 ⁻)		
1091.5 ^b 4	(9-)		

				(HI,x	$(\mathbf{n}\gamma)$ 20	001Gi09 (conti	nued)
					¹²⁴ Cs Lev	vels (continued)
E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J π ‡	E(level) [†]	Jπ‡	E(level) [†]	J ^π ‡
1096.3 [@] 4	(11^+)	1846.1 7		2709.8 6		3817.5 ^b 8	(17 ⁻)
1196.5 ^{&} 3	(10 ⁻)	1932.8 ^d 4	(13 ⁺)	2710.4 [°] 7	(14 ⁻)	3872.3 [#] 5	(18 ⁺)
1289.7 ^c 4	(10 ⁻)	1949.5 [°] 5	(12 ⁻)	2898.5 [#] 4	(16 ⁺)	4206.8 <mark>&</mark> 8	(18 ⁻)
1300.5 ^d 4	(11^{+})	2029.4 [#] 4	(14^{+})	2908.4 5		4382.3 [@] 5	(19 ⁺)
1315.9 [#] 4	(12 ⁺)	2169.6 ^a 5	(13 ⁻)	2945.1 ^{<i>a</i>} 5	(15 ⁻)	4642.6 ^a 8	(19 ⁻)
1494.7 ^a 4	(11 ⁻)	2177.7 5		3009.0 ^b 6	(15 ⁻)	4688.1 ^b 10	(19 ⁻)
1534.3 5		2263.2 ^b 6	(13 ⁻)	3130.3 ^d 5	(16 ⁺)	4946.9 [#] 6	(20^{+})
1611.6 ^b 5	(11 ⁻)	2305.1 ^d 4	(14^{+})	3350.2 ^{&} 6	(16 ⁻)	5128.3 <mark>&</mark> 9	(20 ⁻)
1671.2 ^d 4	(12 ⁺)	2486.3 [@] 4	(15 ⁺)	3384.1 [@] 5	(17^{+})	5464.0 [@] 6	(21^+)
1713.5 [@] 4	(13 ⁺)	2544.8 <mark>&</mark> 5	(14 ⁻)	3613.9 ^d 5	(17 ⁺)	6127.2 [#] 8	(22^{+})
1805.7 ^{&} 4	(12 ⁻)	2706.1 ^d 5	(15^{+})	3767.7 ^a 6	(17 ⁻)		

[†] From a least-squares fit to $E\gamma$'s.

[‡] From Adopted Levels.

[#] Band(A): $\pi h_{11/2} \nu h_{11/2}$, $\alpha = 0$.

[@] Band(a): $\pi h_{11/2} \nu h_{11/2}$, $\alpha = 1$.

& Band(B): $\pi h_{11/2}^2 \nu(d_{5/2}g_{7/2}), \alpha=0$. Above the crossing, the configuration = $\pi h_{11/2}^2 \nu(d_{5/2}g_{7/2}h_{11/2}^2)$.

^a Band(b): $\pi h_{11/2}^2 \nu(d_{5/2}g_{7/2})$, $\alpha = 1$. Above the crossing, the configuration = $\pi h_{11/2}^2 \nu(d_{5/2}g_{7/2}h_{11/2}^2)$.

^b Band(C): $\pi h_{11/2} \nu d_{3/2}$, $\alpha = 1$. Above the crossing, the configuration= $\pi h_{11/2} \nu (d_{5/2} h_{11/2}^2)$.

^c Band(c): $\pi h_{11/2} \nu d_{3/2}$, $\alpha = 0$. Above the crossing, the configuration= $\pi h_{11/2} \nu (d_{5/2} h_{11/2}^2)$.

^{*d*} Band(D): $\pi h_{11/2} \nu h_{11/2}$, $\alpha = 1$.

((

E_{γ}^{\dagger}	Ι _γ &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α ^{<i>a</i>}	Comments
(12.5 [#])		491.6	(6 ⁺)	479.10	$(5)^{+}$			$\overline{I\gamma(12.5)/I\gamma(64.0)}=100/33.$
(19.5 [#])		189.00	$(2)^{+}$	169.5	$(1)^{+}$			$I\gamma(19.5)/I\gamma(189.0)=1.2/100.$
(22.5 [#])		211.50	$(3)^{+}$	189.00	$(2)^{+}$			$I\gamma(22.5)/I\gamma(211.5)=2/100.$
(28.0 [#])		427.6	(6 ⁺)	399.60	$(4)^{+}$			$I\gamma(28.0)/I\gamma(53.9)=2/100.$
(30.8 [#])		301.10	(4)-	270.30	$(3)^{+}$			
35.9 5	1.8 5	565.8	(6 ⁻)	529.90	(5)-			
37.6 1	18.0 9	479.10	$(5)^+$	441.50	4 ⁺			
38.6 1	27.0 14	530.2	(/')	491.6	(6')			
39.2 [•] 5		796.8	(8 ⁻)	757.6	(8 ⁻)			$I\gamma(39.2)/I\gamma(119.3)=33/100.$
39.7 [@] 5		282.70	3+	243.00	$(3)^{+}$			$I\gamma(39.7)/I\gamma(93.7)=23/100.$
53.9 <i>5</i>	1.0 3	427.6	(6^{+})	373.7	$(5)^{+}$			
54.0 1	15 3	243.00	(3)+	189.00	$(2)^{+}$	M1(+E2)	11 7	$\alpha(K)=5.4 \ 9; \ \alpha(L)=5 \ 5; \ \alpha(M)=1.0 \ 9; \ \alpha(N+)=0.23 \ 21$
								α (N)=0.21 <i>19</i> ; α (O)=0.024 <i>21</i> ; α (P)=0.000174 <i>7</i>
								α (K)exp=3.2 10.
								K/L=6.5 <i>30</i> .
58.1 <i>3</i>	9.0 18	301.10	$(4)^{-}$	243.00	$(3)^{+}$	E1	0.978 20	$B(E1)(W.u.)=3.9\times10^{-6} 9$
								α (K)=0.829 <i>17</i> ; α (L)=0.1195 <i>25</i> ; α (M)=0.0243 <i>5</i> ; α (N+)=0.00568 <i>12</i>
								$\alpha(N)=0.00501 \ 11; \ \alpha(O)=0.000648 \ 13;$
								$\alpha(P)=2.40\times10^{-5}$ 5

 $\gamma(^{124}Cs)$

γ ⁽¹²⁴Cs) (continued)</sup>

E_{γ}^{\dagger}	Ι _γ &	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{a}	Comments
58.5 1	40.0 20	588.7	(8 ⁺)	530.2	(7+)	M1	4.22	α (K)exp=1.15 22. K/L=9 3. α (K)=3.61 6; α (L)=0.485 8; α (M)=0.0994 15; α (N+)=0.0240 4 α (N)=0.0210 4; α (O)=0.00291 5; α (P)=0.0001423 22 Prompt component observed on line. α (K)exp>3. K/L>5
64.0 <i>5</i> 64.9	2.0 6	491.6 462.8	(6 ⁺) (7) ⁺	427.6 397.90	(6 ⁺) (5) ⁻	M2	46.9	$\alpha(K)=35.6 5; \alpha(L)=8.90 13; \alpha(M)=1.94 3; \alpha(N)=0.409 6; \alpha(O)=0.0548 8; \alpha(P)=0.00227 4$ From Fig 1 in 2001Gi09
70.8 5	2.0 6	565.8	(6^{-})	495.0	$(6)^{-}$			
71.6 1	55 3	660.3	(9 ⁺)	588.7	(3) (8^+)	M1(+E2)	4.3 20	$\alpha(K)=2.6 \ 6; \ \alpha(L)=1.3 \ 11; \ \alpha(M)=0.28 \ 23; \ \alpha(N+)=0.06 \ 6 \ \alpha(N)=0.06 \ 5; \ \alpha(O)=0.007 \ 6; \ \alpha(P)=8.2\times10^{-5}$
79.5 1	18.0 9	479.10	(5)+	399.60	(4)+	M1(+E2)	3.0 <i>13</i>	$\alpha(K) \exp = 1.8 \ 7.$ K/L=5.8 10. $\alpha(K) = 1.9 \ 5; \ \alpha(L) = 0.8 \ 7; \ \alpha(M) = 0.18 \ 14;$ $\alpha(N+) = 0.04 \ 3$ $\alpha(N) = 0.04 \ 3; \ \alpha(O) = 0.004 \ 4; \ \alpha(P) = 6.1 \times 10^{-5}$ 3
								α(K)exp=1.1 2. K/L>5.
80.1 5	1.0 3	757.6	(8^{-})	677.5	(7^{-})			
81.2 <i>3</i> 83.1 <i>3</i>	4.0 <i>12</i> 13 <i>3</i>	479.10 648.9	(7) ⁻	565.8	(5) (6 ⁻)	M1(+E2)	2.6 11	$\alpha(K)=1.7 4; \alpha(L)=0.7 5; \alpha(M)=0.15 12; \alpha(N+)=0.034 25 \alpha(N)=0.030 23; \alpha(O)=0.004 3; \alpha(P)=5.4\times10^{-5} 3 \alpha(K)\exp=1.6 4. K/L>5. DCO=0.7 1/(2000Lu15).$
89.6 <i>1</i>	22.0 11	301.10	(4)-	211.50	(3)+	E1	0.298	B(E1)(W.u.)= $2.6 \times 10^{-6} 3$ $\alpha(K)=0.254 4; \alpha(L)=0.0345 5;$ $\alpha(M)=0.00702 10; \alpha(N+)=0.001659 24$ $\alpha(N)=0.001458 21; \alpha(O)=0.000193 3;$ $\alpha(P)=7.83 \times 10^{-6} 12$ $\alpha(K)\exp=0.26$ (Normalization value). K/L=6.9 14. DCO=0.66 2(2000Lu15).
91.6 5	0.3 1	586.6	(6 ⁻)	495.0	(6) ⁻			
93.7 ^b 3	13.0 ^b 26	282.70	3+	189.00	(2)+	M1	1.084 <i>19</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.929 \ 16; \ \alpha(\mathbf{L}) = 0.1238 \ 21; \\ &\alpha(\mathbf{M}) = 0.0254 \ 5; \ \alpha(\mathbf{N}+) = 0.00614 \ 11 \\ &\alpha(\mathbf{N}) = 0.00536 \ 9; \ \alpha(\mathbf{O}) = 0.000745 \ 13; \\ &\alpha(\mathbf{P}) = 3.65 \times 10^{-5} \ 7 \\ &\alpha(\mathbf{K}) \exp = 0.96 \ 10. \\ &\mathbf{K/L} > 5. \end{aligned}$
93.7 <mark>b</mark> 5 96.6 5	2.0 ^b 6 1.4 4	491.6 2029.4	(6 ⁺) (14 ⁺)	397.90 1932.8	(5) ⁻ (13 ⁺)			

γ ⁽¹²⁴Cs) (continued)</sup>

E_{γ}^{\dagger}	Ι _γ &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{a}	Comments
96.8 1	27.0 14	397.90	(5)-	301.10	(4) ⁻	M1	0.988	$\begin{aligned} \alpha(K) = 0.846 \ 13; \ \alpha(L) = 0.1128 \ 17; \ \alpha(M) = 0.0231 \\ 4; \ \alpha(N+) = 0.00559 \ 8 \\ \alpha(N) = 0.00488 \ 7; \ \alpha(O) = 0.000679 \ 10; \\ \alpha(P) = 3.33 \times 10^{-5} \ 5 \\ \alpha(K) \exp = 1.03 \ 8. \end{aligned}$
97.1 <i>3</i>	12.5 25	495.0	(6) ⁻	397.90	(5)-	M1	0.979 17	K/L=7.7 5. $\alpha(K)=0.839 \ 14; \ \alpha(L)=0.1118 \ 19; \ \alpha(M)=0.0229$ $4; \ \alpha(N+)=0.00554 \ 10$ $\alpha(N)=0.00484 \ 8; \ \alpha(O)=0.000673 \ 12;$ $\alpha(P)=3.30\times10^{-5} \ 6$
								α(K)exp=1.0 2. K/L>6.
100.8		270.30	(3)+	169.5	(1)+			E_{γ} : from table 4 of 2001Gi09. I γ (100.8)/I γ (270.3)=3/100.
108.7 [@] 5		379.00	(4)+	270.30	(3)+	M1	0.710 <i>14</i>	$\alpha(K)=0.609 \ 12; \ \alpha(L)=0.0810 \ 16; \ \alpha(M)=0.0166 4; \ \alpha(N+)=0.00402 \ 8 \alpha(N)=0.00351 \ 7; \ \alpha(O)=0.000488 \ 10; \alpha(P)=2.39\times10^{-5} \ 5 \alpha(K)exp=0.45 \ 15. K/L>5.$
108.7 1	20.0 10	757.6	(8-)	648.9	(7)-			,
111.7.5	4.0 12	677.5	(/) 3+	565.8 160.5	(6)			
119.0 5	0.5.2	282.70 648 9	$(7)^{-}$	109.5 529.90	(1) $(5)^{-}$			
119.3 5	3.0 9	796.8	(7) (8 ⁻)	677.5	(7 ⁻)	M1,E2	0.77 23	$\alpha(K)=0.58\ 12;\ \alpha(L)=0.15\ 9;\ \alpha(M)=0.032\ 20;\ \alpha(N+)=0.007\ 5\ \alpha(N)=0.007\ 4;\ \alpha(O)=0.0008\ 5;\ \alpha(P)=1.92\times10^{-5}\ 9\ \alpha(K)exp=0.7\ 3.$
124.0 <i>I</i>	115 6	784.3	(10)+	660.3	(9+)	M1	0.490	DCO=0.60 <i>TS</i> (200Lu15). $\alpha(K)=0.420 \ 6; \ \alpha(L)=0.0557 \ 8; \ \alpha(M)=0.01141$ <i>17</i> ; $\alpha(N+)=0.00276 \ 4$ $\alpha(N)=0.00241 \ 4; \ \alpha(O)=0.000336 \ 5;$ $\alpha(P)=1.651\times10^{-5} \ 24$ $\alpha(K)\exp=0.40 \ 5.$ K/L=6.6 9.
130.7 3	14 3	373.7	(5)+	243.00	(3)+	E2	0.726 12	DCO=0.75 3(2000Lu15). $\alpha(K)=0.520 \ 9; \ \alpha(L)=0.163 \ 3; \ \alpha(M)=0.0349 \ 6; \ \alpha(N+)=0.00798 \ 14 \ \alpha(N)=0.00711 \ 13; \ \alpha(O)=0.000856 \ 15; \ \alpha(P)=1.522\times10^{-5} \ 24 \ \alpha(K)\exp=0.6 \ 2. \ K/L\approx4.$
132.0 <i>3</i>	7.0 14	529.90	(5) ⁻	397.90	(5)-			
147.9 5	2.5 8	796.8	(8 ⁻)	648.9	$(7)^{-}$			
150.9 1	19.0 <i>10</i>	529.90	(5)-	379.00	(4)+	E1	0.0698	$\alpha(K)=0.0600 \ 9; \ \alpha(L)=0.00783 \ 11;$ $\alpha(M)=0.001592 \ 23; \ \alpha(N+)=0.000380 \ 6$ $\alpha(N)=0.000333 \ 5; \ \alpha(O)=4.49\times10^{-5} \ 7;$ $\alpha(P)=1.97\times10^{-6} \ 3$ $\alpha(K)=vn\approx0.05$
153.9 <i>3</i>	6.0 12	648.9	(7)-	495.0	(6)-	D+Q		Mult.: From 2000Lu15. DCO=0.60 18(2000Lu15).
156.5 <i>3</i>	8.0 16	530.2	(7 ⁺)	373.7	(5)+			$\alpha(K) \exp[-0.18 \ 3 \ \text{for } 156.5 + 156.6 + 156.7.$ $K/L \approx 5 \ \text{for triplet}$
156.6 <i>1</i>	43.0 22	399.60	$(4)^{+}$	243.00	$(3)^{+}$	M1(+E2)	0.32 7	$\alpha(K)=0.25$ 4; $\alpha(L)=0.053$ 24; $\alpha(M)=0.011$ 6;

γ ⁽¹²⁴Cs) (continued)</sup>

E_{γ}^{\dagger}	Ι _γ &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α ^{a}	Comments
								$\begin{array}{l} \alpha(\text{N}+)=0.0026 \ 12 \\ \alpha(\text{N})=0.0023 \ 11; \ \alpha(\text{O})=0.00029 \ 12; \\ \alpha(\text{P})=8.70\times10^{-6} \ 16 \\ \alpha(\text{K})\exp=0.18 \ 3 \ \text{for } 156.5+156.6+156.7. \\ \text{K/L}\approx5 \ \text{for triplet.} \end{array}$
156.7 5	0.9 <i>3</i>	743.3	(7 ⁻)	586.6	(6 ⁻)			α (K)exp=0.18 3 for 156.5+156.6+156.7.
158.8 <i>I</i>	50.0 25	441.50	4+	282.70	3+	M1	0.246	$\alpha(K)=0.211 3; \alpha(L)=0.0278 4; \alpha(M)=0.00570 8; \alpha(N+)=0.001381 20 \alpha(N)=0.001205 17; \alpha(O)=0.0001678 24; \alpha(P)=8.28\times10^{-6} 12 \alpha(K)exp=0.18 4. K/L>6$
161.7		462.8	(7)+	301.10	(4)-	(E3)	2.27	$\alpha(K)=1.160 \ 17; \ \alpha(L)=0.868 \ 13; \ \alpha(M)=0.193 \ 3; \ \alpha(N+)=0.0437 \ 7 \ \alpha(N)=0.0392 \ 6; \ \alpha(O)=0.00452 \ 7; \ \alpha(P)=3.34\times10^{-5} \ 5 \ Additional information \ 1. \ From Fig. 1 in 2001Gi09$
167.5 <i>1</i>	21.0 11	379.00	(4)+	211.50	(3)+	(M1)	0.212	$\begin{aligned} \alpha(K) = 0.182 \ 3; \ \alpha(L) = 0.0240 \ 4; \ \alpha(M) = 0.00491 \ 7; \\ \alpha(N+) = 0.001191 \ 17 \\ \alpha(N) = 0.001039 \ 15; \ \alpha(O) = 0.0001447 \ 21; \\ \alpha(P) = 7.15 \times 10^{-6} \ 10 \\ \alpha(K) \exp \approx 0.2. \\ K/L > 6. \end{aligned}$
167.9 <i>3</i>	7.0 14	565.8	(6 ⁻)	397.90	(5)-	(D+Q)		Mult.: From 2000Lu15.
169.5 5	1.5 5	169.5	(1)+	0.0	1+	M1	0.205 4	$\begin{aligned} \alpha(K) = 0.176 \ 3; \ \alpha(L) = 0.0232 \ 4; \ \alpha(M) = 0.00476 \ 8; \\ \alpha(N+) = 0.001152 \ 19 \\ \alpha(N) = 0.001005 \ 17; \ \alpha(O) = 0.0001401 \ 23; \\ \alpha(P) = 6.92 \times 10^{-6} \ 12 \\ \alpha(K) \exp = 0.18 \ 1. \end{aligned}$
177.4 <i>3</i>	8.0 16	974.2	(9 ⁻)	796.8	(8-)	(D+Q)		K/L=7.4 5. Mult.: From 2000Lu15. DCO=0.73.9(2000Lu15)
177.5 5 178.0 3 182.5 3	1.3 <i>4</i> 12.0 <i>24</i> 8.0 <i>16</i>	743.3 479.10 677.5	(7^{-}) $(5)^{+}$ (7^{-})	565.8 301.10 495.0	(6 ⁻) (4) ⁻ (6) ⁻	(D+Q)		Mult.: From 2000Lu15.
188 7 5	093	586.6	(6^{-})	397 90	$(5)^{-}$			DCO=0.75 9(2000Lu15).
189.0 <i>I</i>	200.0	189.00	$(2)^+$	0.0	1+	M1+E2	0.177 25	$\alpha(K)=0.144 \ I3; \ \alpha(L)=0.026 \ I0; \ \alpha(M)=0.0055 \ 21; \ \alpha(N+)=0.0013 \ 5 \ \alpha(N)=0.0011 \ 4; \ \alpha(O)=0.00015 \ 5; \ \alpha(P)=5.03\times10^{-6} \ I3 \ \alpha(K)\exp=0.15 \ 2. \ K/L=6.1 \ 5. \ DCO=0.80 \ 3(20001 \ n15)$
196.4 5 198.5 3 210.6 5 211.5 3	3.0 9 13. <i>3</i> 2.0 6 10.0 20	479.10 441.50 399.60 211.50	$(5)^+$ 4^+ $(4)^+$ $(3)^+$	282.70 243.00 189.00 0.0	3 ⁺ (3) ⁺ (2) ⁺ 1 ⁺	E2	0.1377	$\alpha(K)=0.1087 \ 16; \ \alpha(L)=0.0230 \ 4; \ \alpha(M)=0.00486 \ 8; \\ \alpha(N+)=0.001129 \ 17 \\ \alpha(N)=0.001000 \ 15; \ \alpha(O)=0.0001259 \ 19; \\ \alpha(P)=3.49\times10^{-6} \ 6 \\ \alpha(K)\exp=0.12 \ 1. \\ K/L=4.7 \ 4. \\ DCO=1.15 \ 2(2000Lu15).$

γ ⁽¹²⁴Cs) (continued)</sup>

E_{γ}^{\dagger}	Ι _γ &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{a}	Comments
216.6 1	18.0 9	974.2	(9-)	757.6	(8-)	M1	0.1055	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0906 \ 13; \ \alpha(\mathbf{L}) = 0.01186 \ 17; \\ &\alpha(\mathbf{M}) = 0.00243 \ 4; \ \alpha(\mathbf{N}+) = 0.000588 \ 9 \\ &\alpha(\mathbf{N}) = 0.000513 \ 8; \ \alpha(\mathbf{O}) = 7.15 \times 10^{-5} \ 10; \\ &\alpha(\mathbf{P}) = 3.54 \times 10^{-6} \ 5 \\ &\alpha(\mathbf{K}) \exp[=0.20 \ 10. \end{aligned}$
219.6 <i>1</i>	56 <i>3</i>	1315.9	(12 ⁺)	1096.3	(11+)	M1	0.1016	K/L>5. $\alpha(K)=0.0873 \ I3; \ \alpha(L)=0.01143 \ I6; \ \alpha(M)=0.00234 \ 4; \ \alpha(N+)=0.000567 \ 8$ $\alpha(N)=0.000494 \ 7; \ \alpha(O)=6.89\times10^{-5} \ I0; \ \alpha(P)=3.42\times10^{-6} \ 5$ $\alpha(K)\exp=0.080 \ I0.$
222.3 1	16.0 8	1196.5	(10 ⁻)	974.2	(9 ⁻)	M1	0.0983	K/L=6 <i>1</i> . $\alpha(K)=0.0845 \ 12; \ \alpha(L)=0.01106 \ 16;$ $\alpha(M)=0.00226 \ 4; \ \alpha(N+)=0.000548 \ 8$ $\alpha(N)=0.000478 \ 7; \ \alpha(O)=6.67\times10^{-5} \ 10;$ $\alpha(P)=3.30\times10^{-6} \ 5$ $\alpha(K)\exp=0.20 \ 10.$ K/L>5.
228.8 <i>5</i> 230.0 <i>3</i>	2.5 8 9.0 <i>18</i>	529.90 441.50	$(5)^{-}$ 4 ⁺	301.10 211.50	$(4)^{-}$ $(3)^{+}$			ц <i>ш 5</i> .
243.0 5 252.5 1	4.0 <i>12</i> 54 <i>3</i>	243.00 441.50	(3) ⁺ 4 ⁺	0.0 189.00	1+ (2)+	E2	0.0762	α (K)=0.0614 9; α (L)=0.01174 17; α (M)=0.00246 4; α (N+)=0.000576 9 α (N)=0.000509 8; α (O)=6.52×10 ⁻⁵ 10; α (P)=2.03×10 ⁻⁶ 3 α (K)exp=0.068 10. K II = 4.0.7
261.6.5	155	1022.9	(12+)	1671.0	(12+)			K/L=4.0 /. DCO=1.15 9(2000Lu15).
261.6 5	2.0 6	757.6	(13^{-}) (8 ⁻)	495.0	(12^{+}) $(6)^{-}$	(Q)		Mult.: From 2000Lu15.
270.3 3	7.0 14	270.30	(3)+	0.0	1+	E2(+M1)	0.0597 15	$\alpha(K) = 0.0498 \ 9; \ \alpha(L) = 0.0078 \ 13; \alpha(M) = 0.0016 \ 3; \ \alpha(N+) = 0.00039 \ 7 \alpha(N) = 0.00034 \ 6; \ \alpha(O) = 4.5 \times 10^{-5} \ 6; \alpha(P) = 1.81 \times 10^{-6} \ 16 Mult.: listed as E2+M1 in 2001Gi09. Measured K/L value prefers E2. \alpha(K) exp \approx 0.025. K/L \approx 4$
298.2 <i>3</i>	7.0 14	1494.7	(11 ⁻)	1196.5	(10 ⁻)	M1,E2	0.0448 8	$\begin{array}{l} \alpha(\mathrm{K})=0.0376 \ 14; \ \alpha(\mathrm{L})=0.0057 \ 7; \\ \alpha(\mathrm{M})=0.00118 \ 16; \ \alpha(\mathrm{N}+)=0.00028 \ 4 \\ \alpha(\mathrm{N})=0.00025 \ 3; \ \alpha(\mathrm{O})=3.3\times10^{-5} \ 3; \\ \alpha(\mathrm{P})=1.37\times10^{-6} \ 15 \end{array}$
301.8 5	2.3 7	796.8	(8 ⁻)	495.0	(6)-	(Q)		$\alpha(K) \exp \approx 0.03$. Mult.: From 2000Lu15.
311.0 3	5.0 10	1805.7	(12 ⁻)	1494.7	(11 ⁻)			DC0=1.03 9(2000L013).
312.0 1	85 4	1096.3	(11 ⁺)	784.3	(10)+	M1(+E2)	0.0393 11	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0330 \ 16; \ \alpha(\mathbf{L}) = 0.0050 \ 5; \\ &\alpha(\mathbf{M}) = 0.00103 \ 12; \ \alpha(\mathbf{N}+) = 0.000245 \ 24 \\ &\alpha(\mathbf{N}) = 0.000215 \ 22; \ \alpha(\mathbf{O}) = 2.89 \times 10^{-5} \ 20; \\ &\alpha(\mathbf{P}) = 1.21 \times 10^{-6} \ 14 \\ &\alpha(\mathbf{K}) \exp = 0.045 \ 10. \\ &\mathbf{K}/\mathbf{L} = 6.2 \ 9. \\ &\mathbf{DCO} = 0.77 \ 4(2000 \mathrm{Lu15}). \end{aligned}$

γ ⁽¹²⁴Cs) (continued)</sup>

E_{γ}^{\dagger}	$I_{\gamma}^{\&}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
315.9 <i>3</i>	10.0 20	2029.4	(14^{+})	1713.5 (13+)		
325.3 5	1.3 4	974.2	(9 ⁻)	648.9 (7)-		
333.9 5	2.0 6	1091.5	(9 ⁻)	757.6 (8-)		
348.2 5	2.6 8	1091.5	(9 ⁻)	743.3 (7-)		
363.9 5	4.0 12	2169.6	(13^{-})	1805.7 (12-)		
370.7 <i>3</i>	7.0 14	1671.2	(12^{+})	1300.5 (11+)		
372.3 5	3.0 9	2305.1	(14^{+})	1932.8 (13 ⁺)		
375.2 5	2.0 6	2544.8	(14^{-})	2169.6 (13-)		
397.6 <i>1</i>	36.0 18	1713.5	(13^{+})	1315.9 (12 ⁺)		
400.3 5	3.0 9	2945.1	(15 ⁻)	2544.8 (14 ⁻)		
401.0 3	8.0 16	2706.1	(15^{+})	2305.1 (14 ⁺)		
411.8		2898.5	(16^{+})	2486.3 (15 ⁺)		E_{γ} : From 2000Lu15.
414.0 5	0.7 2	1091.5	(9 ⁻)	677.5 (7 ⁻)		
415.1 5	2.0 6	1611.6	(11^{-})	1196.5 (10 ⁻)		
436.0 <i>3</i>	7.0 14	1096.3	(11^{+})	660.3 (9 ⁺)		
438.9 <i>3</i>	8.0 16	1196.5	(10^{-})	757.6 (8 ⁻)		
456.9 <i>1</i>	19.0 10	2486.3	(15^{+})	2029.4 (14 ⁺)		
483.6 5	2.5 8	3613.9	(17^{+})	3130.3 (16 ⁺)		
485.6 <i>3</i>	5.5 11	3384.1	(17^{+})	2898.5 (16 ⁺)		
488.3		3872.3	(18^{+})	3384.1 (17 ⁺)		E_{γ} : From 2000Lu15.
492.9 <i>3</i>	5.0 10	1289.7	(10^{-})	796.8 (8 ⁻)		
506.5 <i>3</i>	12.0 24	2177.7		$1671.2 (12^+)$		
510.0 5	3.0 9	4382.3	(19^{+})	3872.3 (18 ⁺)		
516.2 <i>1</i>	18.0 9	1300.5	(11^{+})	784.3 $(10)^+$		
520.1 <i>3</i>	6.0 12	1611.6	(11^{-})	1091.5 (9 ⁻)		
520.5 <i>3</i>	8.0 16	1494.7	(11^{-})	974.2 (9 ⁻)		
531.6 1	54 3	1315.9	(12+)	784.3 (10)+	Q	Mult.: From 2000Lu15. DCO=1.10 7(2000Lu15).
532.1 ^b 5	2.5 <mark>b</mark> 8	1289.7	(10^{-})	757.6 (8-)		
532.1 ^b 3	5.0 <mark>b</mark> 10	2709.8		2177.7		
574.9 <i>1</i>	16.0 8	1671.2	(12^{+})	1096.3 (11 ⁺)		
591.6 <i>1</i>	16.0 8	2305.1	(14^{+})	1713.5 (13 ⁺)		
603.3 <i>3</i>	8.0 16	2908.4		2305.1 (14 ⁺)		
609.2 <i>3</i>	10.0 20	1805.7	(12^{-})	1196.5 (10 ⁻)		
616.9 <i>3</i>	13 <i>3</i>	1932.8	(13^{+})	1315.9 (12+)		
617.2 <i>3</i>	13 <i>3</i>	1713.5	(13^{+})	1096.3 (11 ⁺)		
632.3 <i>3</i>	8.0 16	1932.8	(13^{+})	1300.5 (11+)		
633.9 5	3.0 9	2305.1	(14^{+})	$1671.2 (12^+)$		
644.0 <i>3</i>	8.0 16	3130.3	(16^{+})	2486.3 (15 ⁺)		
651.6 <i>3</i>	7.0 14	2263.2	(13^{-})	1611.6 (11 ⁻)		
659.8 <i>3</i>	5.0 10	1949.5	(12^{-})	1289.7 (10 ⁻)		
674.9 <i>3</i>	7.0 14	2169.6	(13^{-})	1494.7 (11 ⁻)		
676.7 5	2.0 6	2706.1	(15^{+})	$2029.4 (14^+)$		
713.5 1	46.0 23	2029.4	(14+)	1315.9 (12+)	Q	Mult.: From 2000Lu15. DCO=1.11 7(2000Lu15).
739.1 <i>3</i>	9.0 18	2544.8	(14^{-})	1805.7 (12-)		
745.8 <i>3</i>	7.0 14	3009.0	(15 ⁻)	2263.2 (13 ⁻)		
750.0 3	10.0 20	1534.3		784.3 (10)+		
760.9 5	3.0 9	2710.4	(14 ⁻)	1949.5 (12-)		
772.8 3	10.0 20	2486.3	(15^{+})	1713.5 (13 ⁺)		
773.3 3	10.0 20	2706.1	(15^{+})	1932.8 (13+)		
775.5 3	8.0 16	2945.1	(15^{-})	2169.6 (13-)		
805.4 3	6.0 12	3350.2	(16 ⁻)	2544.8 (14-)		
808.5 5	4.0 12	3817.5	(17 ⁻)	3009.0 (15 ⁻)		
822.6 3	7.0 14	3767.7	(17 ⁻)	2945.1 (15 ⁻)		

γ ⁽¹²⁴Cs) (continued)

E_{γ}^{\dagger}	Ι _γ &	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	E_{γ}^{\dagger}	Ι _γ &	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$
825.2 5	4.0 12	3130.3	(16 ⁺)	2305.1 (14+)	921.5 5	2.5 8	5128.3	(20 ⁻)	4206.8 (18 ⁻)
856.6 5	4.0 12	4206.8	(18^{-})	3350.2 (16 ⁻)	973.8 <i>3</i>	13 <i>3</i>	3872.3	(18^{+})	2898.5 (16 ⁺)
869.1 <i>1</i>	28.0 14	2898.5	(16^{+})	2029.4 (14 ⁺)	998.2 <i>3</i>	5.0 10	4382.3	(19^{+})	3384.1 (17 ⁺)
870.6 5	2.0 6	4688.1	(19 ⁻)	3817.5 (17 ⁻)	1074.6 <i>3</i>	5.0 10	4946.9	(20^{+})	3872.3 (18 ⁺)
874.9 5	3.0 9	4642.6	(19 ⁻)	3767.7 (17 ⁻)	1081.7 <i>3</i>	5.0 10	5464.0	(21^{+})	4382.3 (19 ⁺)
897.8 <i>3</i>	7.0 14	3384.1	(17^{+})	2486.3 (15+)	1180.3 5	4.0 12	6127.2	(22^{+})	4946.9 (20+)
907.8 <i>3</i>	8.0 16	3613.9	(17^{+})	2706.1 (15 ⁺)					

[†] From 2001Gi09, unless otherwise indicated. Uncertainty of the γ 's from 2001Gi09 is assumed by evaluators based on the general comment in 2001Gi09, $\Delta E=0.1$ keV for I γ >15, $\Delta E=0.3$ keV for I γ =5-15, and $\Delta E=0.5$ keV for I γ <5 (The assignment method is the same as that in ${}^{115}In({}^{12}C, 3n\gamma)$:XUNDL-2). [‡] From ce measurement (2001Gi09).

[#] Strongly converted transition.

[@] Very weak intensity.

& From 2001Gi09. I(γ 189)=200.0. Uncertainty is assumed by evaluators based on the general comment in 2001Gi09, I γ =5% for $I_{\gamma}>15$, $I_{\gamma}=20\%$ for $I_{\gamma}=5-15$, and $I_{\gamma}=30\%$ for $I_{\gamma}<5$ and complex lines. Branching ratios given under comments are from Table 4 of 2001Gi09.

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Multiply placed with intensity suitably divided.

(HI,xnγ) 2001Gi09

¹²⁴₅₅Cs₆₉

Legend

(HI,xnγ) 2001Gi09

Level Scheme (c	ontinued)
-----------------	-----------

¹²⁴₅₅Cs₆₉

(HI,xnγ) 2001Gi09

¹²⁴₅₅Cs₆₉

¹²⁴₅₅Cs₆₉

¹²⁴₅₅Cs₆₉

¹²⁴₅₅Cs₆₉