		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. Katakura, Z. D. Wu	NDS 109, 1655 (2008)	1-Apr-2008

Parent: ¹²⁴Ba: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=11.0 \text{ min } 5$; $Q(\varepsilon)=2642 \ 15$; $\%\varepsilon+\%\beta^+$ decay=100.0

The decay scheme is that proposed by 1986We01 on the basis of $E\gamma$ sums and $\gamma\gamma$ coin. The decay scheme is incomplete. Many low-energy γ rays may cause the intensity imbalance. Log *ft* values may suffer from the imbalance.

1986We01: La(³He,spall) Ce(³He,spall) E(³He)=280 MeV, on-line ms, semi; measured E γ , I γ , ce, $\gamma\gamma$ coin, γ ce coin. 1972Dr06: ¹¹⁶Sn(¹²C,4n) chem; measured T_{1/2}, γ .

Other: 1978Bo32.

^{124}Cs	Levels

E(level) [†]	J#‡	T _{1/2}	E(level) [†]	J ^{π‡}	E(level) [†]	$J^{\pi \ddagger}$
0.0	1+	30.8 s 5	417.19 10	$(3,4)^+$	1000.91 25	0,1,2
169.53 6	$(1)^{+}$		443.86 9	$(1,2)^+$	1014.45 22	
188.98 <i>6</i>	$(2)^{+}$		464.91 15	1,2	1040.32 20	0,1,2
211.65 6	$(3)^{+}$		505.60 8	$(1,2,3)^+$	1049.23 22	0,1
242.88 6	$(3)^{+}$		512.29 10	$(1,2,3)^+$	1097.88 18	0,1
253.32 7	$(1)^{+}$		557.98 20	$(1,2)^+$	1131.93 17	1
270.32 8	$(3)^{+}$		596.17 17		1141.58 19	0,1,2
272.13 9	$(0,1)^+$		596.63 8	+	1168.62 21	0,1
272.68 6	$(2,3)^+$		613.90 8	$(0,1,2)^+$	1216.62 12	(1^{+})
282.62 7	3+		671.42 12	0,1,2	1244.57 10	$(1)^{+}$
301.12 8	$(4)^{-}$		751.65 14	(1^{+})	1259.84 14	(1^{+})
312.48 6	$(2)^{+}$		770.82 9	$(1,2,3)^+$	1388.90 16	(1^{+})
338.5? 8			846.5 <i>3</i>		1433.4 <i>3</i>	0,1,2
348.76? 9			864.1 <i>4</i>	1,2	1589.4 <i>4</i>	0,1,2
362.73 6	$(3)^{+}$		895.7 <i>3</i>	0,1,2	1623.2 5	0,1,2
397.61 17	(5)-		920.69 17	$(0 \text{ to } 3)^+$	1638.3? 10	0,1,2
401.32 9	$(1,2)^+$		933.85 20	0,1	1707.3 5	0,1,2
404.31 9	$(1^+, 2^+)$		950.4?			

[†] From a least-squares fit to $E\gamma's$.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(935 15)	1707.3		0.40 9	5.77 10	0.40 9	εK=0.8471 2; εL=0.1197 2; εM+=0.03324 4
(1004 15)	1638.3?		0.21 5	6.11 11	0.21 5	εK=0.8477 2; εL=0.1192 1; εM+=0.03309 4
(1019 15)	1623.2		0.31 7	5.96 10	0.31 7	εK=0.8478 2; εL=0.1191 1; εM+=0.03306 3
(1053 15)	1589.4		0.96 15	5.49 8	0.96 15	εK=0.8481 2; εL=0.11893 9; εM+=0.03300 3
(1209 15)	1433.4		0.63 12	5.80 9	0.63 12	εK=0.8490; εL=0.11814 7; εM+=0.03274 3
(1253 15)	1388.90		3.2 5	5.13 8	3.2 5	εK=0.8491; εL=0.11794 7; εM+=0.03268 3
(1382 15)	1259.84	0.0067 15	3.7 5	5.15 7	3.7 5	av Eβ=171.4 68; εK=0.8484 3; εL=0.11730 9; εM+=0.03248 3
(1397 15)	1244.57	0.019 4	9.1 13	4.77 7	9.1 13	av E β =178.2 68; ε K=0.8482 3; ε L=0.11721 9; ε M+=0.03245 3
(1425 15)	1216.62	0.037 8	13.1 18	4.63 7	13.1 18	av Eβ=190.5 66; εK=0.8477 4; εL=0.1170 1; εM+=0.03240 3
(1473 15)	1168.62	0.0048 10	1.08 18	5.74 8	1.08 18	av Eβ=211.5 66; εK=0.8465 5; εL=0.1167 2; εM+=0.03230 4
(1500 15)	1141.58	0.0033 6	0.59 8	6.02 7	0.59 8	av Eβ=223.4 66; εK=0.8456 6; εL=0.11650 13;

Continued on next page (footnotes at end of table)

$^{124}\mathbf{Ba}\,\varepsilon\,\mathbf{decay}$ 1986We01 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$\mathrm{I}\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(1510 15)	1131.93	0.011 3	1.8 5	5.54 13	1.8 5	ε M+=0.03224 4 av E β =227.6 66; ε K=0.8453 6; ε L=0.11642 13; sM+=0.03222 4
(1544 15)	1097.88	0.0123 24	1.55 25	5.63 8	1.56 25	av $\mathcal{E}\beta$ =242.4 <i>66</i> ; ε K=0.8439 8; ε L=0.11612 <i>15</i> ;
(1593 15)	1049.23	0.0124 23	1.11 17	5.80 7	1.12 17	ϵ M+=0.03215 5 av E β =263.7 66; ϵ K=0.8413 10; ϵ L=0.11562 17; ϵ M+=0.03199 5
(1602 15)	1040.32	0.0083 18	0.70 14	6.00 9	0.71 14	av $\mathcal{E}\beta$ =267.6 66; ε K=0.8408 10; ε L=0.11553 18;
(1641 15)	1000.91	0.0073 19	0.48 12	6.19 <i>11</i>	0.49 12	$\epsilon M += 0.05196.5$ av E $\beta = 284.8.66$; $\epsilon K = 0.8382.12$; $\epsilon L = 0.11506.20$; $\epsilon M += 0.03182.6$
(1708 15)	933.85	0.028 5	1.25 19	5.81 7	1.28 19	av E β =314.0 66; ε K=0.8326 15; ε L=0.11412 24; ε M+=0.03156 7
(1746 15)	895.7	0.015 5	0.54 18	6.20 15	0.55 18	av $E\beta$ =330.7 66; ε K=0.8287 17; ε L=0.1135 3; ε M+=0.03138 8
(1778 15)	864.1	0.009 4	0.27 12	6.51 <i>19</i>	0.28 12	av E β =344.5 66; ε K=0.8252 19; ε L=0.1129 3; ε M+=0.03123 8
(1890 15)	751.65	0.22 3	4.3 6	5.36 7	4.5 6	av E β =393.7 66; ε K=0.8095 25; ε L=0.1106 4;
(1971 15)	671.42	0.022 6	0.31 8	6.54 12	0.33 9	av $E\beta$ =428.8 66; ε K=0.795 3; ε L=0.1085 5;
(2028 15)	613.90	0.09 4	1.0 5	6.05 20	1.1 5	$\epsilon_{\text{EM}} = 0.02999 \ 12$ av $\epsilon_{\beta} = 454.1 \ 66; \ \epsilon_{\text{K}} = 0.784 \ 4; \ \epsilon_{\text{L}} = 0.1068 \ 5;$
(2084 15)	557.98	0.025 9	0.24 8	6.71 <i>16</i>	0.26 9	$\varepsilon M += 0.02952 \ I_3$ av E $\beta = 478.8 \ 67; \ \varepsilon K = 0.771 \ 4; \ \varepsilon L = 0.1051 \ 5;$
(2177 15)	464.91	0.12 2	0.87 18	6.18 9	0.99 20	εM +=0.02902 14 av E β =519.9 67; ε K=0.748 4; ε L=0.1018 6;
(2198 15)	443.86	0.030 10	0.20 7	6.83 16	0.23 8	$\varepsilon M + = 0.02811 I 6$ av E $\beta = 529.2 67$; $\varepsilon K = 0.743 4$; $\varepsilon L = 0.1010 6$;
(2238 15)	404.31	0.13 3	0.82 17	6.23 10	0.95 20	$\varepsilon M += 0.02789 T \delta$ av E $\beta = 546.7 \ 67; \ \varepsilon K = 0.732 \ 5; \ \varepsilon L = 0.0994 \ 6;$
(2241 15)	401.32	0.21 4	1.3 3	6.04 9	1.5 3	$\varepsilon M + = 0.02/4/17/$ av E $\beta = 548.0.67$; $\varepsilon K = 0.731.5$; $\varepsilon L = 0.0993.6$; $\varepsilon M + = 0.07243.17$
(2279 [‡] 15)	362.73	0.15 3	0.84 18	6.24 10	0.99 21	av E β =565.2 67; ε K=0.720 5; ε L=0.0978 7;
(2330 15)	312.48	0.55 9	2.6 4	5.76 8	3.2 5	$\varepsilon M += 0.02700 T 8$ av E $\beta = 587.5 67$; $\varepsilon K = 0.705 5$; $\varepsilon L = 0.0957 7$;
(2370 15)	272.13	0.36 8	1.5 3	6.01 10	1.9 4	ε m += 0.02042 18 av E β =605.4 67; ε K=0.692 5; ε L=0.0939 7;
(2389 15)	253.32	0.74 14	3.1 6	5.72 9	3.8 7	av $E\beta$ =613.8 67; ε K=0.686 5; ε L=0.0931 7;
(2472 15)	169.53	4.3 6	14.4 19	5.07 7	18.7 25	$\epsilon_{\text{EM}+=0.02570}$ 19 av E β =651.2 67; ϵ E=0.659 5; ϵ L=0.0893 7;
(2642 15)	0.0	53	12 8	5.2 3	17 11	$\varepsilon_{M+=0.02465} \ 20$ av E β =727.2 68; ε K=0.600 6; ε L=0.0812 8; ε M+=0.02242 20

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

 $\gamma(^{124}Cs)$

I γ normalization: From I(354 γ , 2⁺ to 0⁺ in ¹²⁴Xe)=47% 6. RI(F,H,I) Whole intensity of this γ was assigned to other components by authors.

 $\alpha(K)$ exp are from Ice(K)/I γ normalized to $\alpha(K)(E2)=0.0207$ for 354 γ (2⁺ to 0⁺) in ¹²⁴Xe.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger e}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. ^C	α^{f}	Comments
<i>x</i> ≈33								L/M=4.0 4. E_{γ} : listed only in authors' conversion-electron table.
36.1 ^{ai}		348.76?		312.48	$(2)^{+}$, .
x38.0 1								
x38.65 5								
38.65 5		443.86	$(1,2)^+$	404.31	$(1^+, 2^+)$			E_{γ} : 38.7 in authors' drawing. Not placed in authors' table.
43.70 5	1.26 6	1141.58	0,1,2	1097.88	0,1			
~44.90 8 50 3 1	0.30 3	362 73	$(3)^{+}$	312 /8	$(2)^{+}$			
53.85.5	3.89.8	242.88	$(3)^+$	188.98	$(2)^+$	M1	5.37	$\alpha(K) = 4.60.7; \alpha(L) = 0.618.9; \alpha(M) = 0.1266.18; \alpha(N+) = 0.0306.5$
00100 0	0.07 0	212100	(0)	100000	(=)		0107	$\alpha(N) = 0.0267 4; \alpha(O) = 0.00371 6; \alpha(P) = 0.000181 3$
								α (L)exp=0.63 +5-6, L/M=4.5 6.
58.20 8	0.26 3	301.12	(4) ⁻	242.88	$(3)^{+}$	E1	0.974	α (K)=0.825 <i>12</i> ; α (L)=0.1189 <i>18</i> ; α (M)=0.0242 <i>4</i> ; α (N+)=0.00565 <i>9</i>
								α (N)=0.00498 8; α (O)=0.000644 10; α (P)=2.39×10 ⁻⁵ 4
50.15.0	0 17 0	212 49	$(0)^+$	050.00	(1)+			$\alpha(L)\exp=0.12 + 3 - 2.$
59.15 8	0.173	312.48	(2)	253.32	(1)			
61.6^{8t} I	. 0.017	362.73	$(3)^{+}$	301.12	$(4)^{-}$			E_{γ} : complex line (1986We01).
01.08 1	≈0.017	505.00	$(1,2,3)^{+}$	443.80	$(1,2)^{+}$			E_{γ} : complex line (1980 web). L : From the intensity (~0.06) in the figure in 1986 Web). Ly=0.17 4 for a
								doublet.
66.2 1	0.22 4	348.76?		282.62	3+			
69.50 <i>5</i>	3.06 6	312.48	$(2)^{+}$	242.88	(3)+	(M1)	2.56	$\alpha(K)=2.19 4$; $\alpha(L)=0.294 5$; $\alpha(M)=0.0601 9$; $\alpha(N+)=0.01455 21$
								α (N)=0.01270 <i>18</i> ; α (O)=0.001765 <i>25</i> ; α (P)=8.63×10 ⁻⁵ <i>13</i>
			- 1		(m) 1			α (K)exp \approx 1.2, K/L \approx 8.9.
70.9 1	0.22 4	282.62	3^+	211.65	$(3)^+$			E_{γ} : complex line (1986We01).
73.3°	0.07	242.88	(3)	169.53	(1)'			
74.8° 1 x76.0.1	≈ 0.06	6/1.42	0,1,2	596.63	I	(M1)	1.01	$\alpha(\mathbf{K}) = 1.627.24; \ \alpha(\mathbf{L}) = 0.210.4; \ \alpha(\mathbf{M}) = 0.0448.7; \ \alpha(\mathbf{N}) = 0.01085.16$
10.9 1	0.15 5					$(\mathbf{W}\mathbf{I}\mathbf{I})$	1.91	$\alpha(\mathbf{K}) = 1.05724; \ \alpha(\mathbf{L}) = 0.2194; \ \alpha(\mathbf{M}) = 0.04487; \ \alpha(\mathbf{M}+) = 0.0108570$
								$\alpha(N) = 0.0094774, \alpha(O) = 0.00151079, \alpha(F) = 0.444 \times 10^{-10}$
^x 79.4 1	0.15.3					M1.E2	3.0 13	$\alpha(K)=1.95; \alpha(L)=0.87; \alpha(M)=0.1814; \alpha(N+)=0.044$
						,		$\alpha(N)=0.04$ 3; $\alpha(O)=0.004$ 4; $\alpha(P)=6.1\times10^{-5}$ 3
								α (K)exp=2.1 +8-6.
81.3 <i>I</i>	0.10 2	443.86	$(1,2)^+$	362.73	(3)+	M1,E2	2.8 12	$\alpha(K)=1.85; \alpha(L)=0.86; \alpha(M)=0.1613; \alpha(N+)=0.043$
								α (N)=0.033 25; α (O)=0.004 3; α (P)=5.7×10 ⁻⁵ 3
								$\alpha(K)\exp=2.2 + 11 - 6.$

From ENSDF

						¹²⁴ Ba ε dec	ay <mark>198</mark>	6We01 (co	ntinued)
						<u> </u>	(¹²⁴ Cs) (c	ontinued)	
E_{γ}^{\dagger}	Ι _γ †‡ e	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. ^C	δ^{c}	α^{f}	Comments
83.7 1	0.34 3	253.32	(1)+	169.53	(1)+	(M1,E2)		2.5 11	$\alpha(K)=1.7 4$; $\alpha(L)=0.7 5$; $\alpha(M)=0.14 11$; $\alpha(N+)=0.033 24$ $\alpha(N)=0.029 22$; $\alpha(O)=0.0035 25$; $\alpha(P)=5.3\times10^{-5} 3$ $\alpha(K)\exp\approx1.2$, K/L ≈3.2 .
84.40 ^{gi} 15 84.40 ^g 15	0.20 3	338.5? 596.63	+	253.32 512.29	$(1)^+$ $(1,2,3)^+$				I _{γ} : From the intensity in the figure in 1986We01. I γ =0.29 3 for a doublet.
88.3 <i>1</i> 89.50 <i>8</i>	0.12 <i>3</i> 0.62 <i>4</i>	505.60 301.12	$(1,2,3)^+$ $(4)^-$	417.19 211.65	$(3,4)^+$ $(3)^+$	E1		0.299	$\begin{array}{l} \alpha(K) \exp \approx 0.8, \ K/L \approx 7.1. \\ \alpha(K) \exp \approx 0.5. \\ \alpha(K) = 0.255 \ 4; \ \alpha(L) = 0.0347 \ 5; \ \alpha(M) = 0.00705 \ 10; \\ \alpha(N+) = 0.001665 \ 24 \end{array}$
90.07 <i>5</i>	1.03 4	362.73	(3)+	272.68	(2,3)+	M1(+E2)	<0.2	1.24 4	$\begin{aligned} &\alpha(N) = 0.001463 \ 21; \ \alpha(O) = 0.000194 \ 3; \ \alpha(P) = 7.85 \times 10^{-6} \ 12 \\ &\alpha(K) \exp = 0.25 \ +5-4, \ K/L = 7.5 \ 12. \\ &\alpha(K) = 1.052 \ 19; \ \alpha(L) = 0.152 \ 14; \ \alpha(M) = 0.031 \ 3; \ \alpha(N+) = 0.0075 \ 7 \\ &\alpha(N) = 0.0066 \ 6; \ \alpha(O) = 0.00090 \ 7; \ \alpha(P) = 4.10 \times 10^{-5} \ 6 \end{aligned}$
90.95 7	0.20 3	596.63	+	505.60	(1,2,3)+	M1,E2		1.9 8	α (K)exp=0.88 <i>12</i> , K/L=7.5 <i>11</i> , L/M≈4.6. α (K)=1.3 <i>3</i> ; α (L)=0.5 <i>4</i> ; α (M)=0.10 <i>8</i> ; α (N+)=0.023 <i>17</i> α (N)=0.020 <i>15</i> ; α (O)=0.0024 <i>17</i> ; α (P)=4.19×10 ⁻⁵ <i>22</i> α (K)exp=2.2 + 6.5
93.68 ^g 5	0.60 4	282.62	3+	188.98	(2)+	M1(+E2)	<0.6	1.25 17	$\alpha(K)\exp^{-2.2} + 0^{-5.2}$ $\alpha(K)=1.00 \ 8; \ \alpha(L)=0.20 \ 8; \ \alpha(M)=0.042 \ 17; \ \alpha(N+)=0.010 \ 4$ $\alpha(N)=0.009 \ 4; \ \alpha(O)=0.0011 \ 4; \ \alpha(P)=3.71\times10^{-5} \ 8$ I_{γ} : From the intensity in the figure in 1986We01. $I_{\gamma}=0.64 \ 4$ for a doublet. $\alpha(K)\exp=0.96 \ +11-9.$
93.68 ^{gi} 5 96.50 15 100.7 1	0.04 2 0.26 <i>4</i>	864.1 397.61 270.32	1,2 (5) ⁻ (3) ⁺	770.82 301.12 169.53	$(1,2,3)^+$ $(4)^-$ $(1)^+$	E2		1.82	$\alpha(K)=1.184 \ 17; \ \alpha(L)=0.504 \ 8; \ \alpha(M)=0.1089 \ 16; \ \alpha(N+)=0.0247$
101 50 7		(12.00	(0.1.0)+	510.00	(1.2.2)+		10.2		α (N)=0.0221 4; α (O)=0.00260 4; α (P)=3.29×10 ⁻⁵ 5 α (K)exp=0.92 +30-23, K/L=3.5 +7-6.
101.58 7	0.62 4	613.90	(0,1,2)	512.29	(1,2,3)	M1+E2	1.0 3	1.31 16	$\alpha(K)=0.95 \ 8; \ \alpha(L)=0.29 \ 7; \ \alpha(M)=0.062 \ 15; \ \alpha(N+)=0.014 \ 4 \\ \alpha(N)=0.013 \ 3; \ \alpha(O)=0.0015 \ 4; \ \alpha(P)=3.05\times10^{-5} \ 7 \\ \alpha(K)\exp=0.89 \ 15, \ K/L=3.4 \ +6-5, \ L/M=4.2 \ 2.$
102.6 <i>1</i>	0.65 5	272.13	$(0,1)^+$	169.53	$(1)^{+}$	d			α (K)exp=0.58 6, K/L=5.6 6, L/M=4.2 4 for 102.6 γ and 103.16 γ .
103.16 <i>5</i> 104.6 <i>1</i>	2.96 8 0.37 <i>4</i>	272.68 417.19	$(2,3)^+$ $(3,4)^+$	169.53 312.48	$(1)^+$ $(2)^+$	<i>d</i> M1,E2		1.2 4	$\alpha(K)=0.87$ 19; $\alpha(L)=0.26$ 17; $\alpha(M)=0.06$ 4; $\alpha(N+)=0.013$ 9 $\alpha(N)=0.011$ 8; $\alpha(O)=0.0014$ 9; $\alpha(P)=2.81\times10^{-5}$ 15
108.29 5	2.02 6	613.90	(0,1,2)+	505.60	(1,2,3)+	M1		0.718	$\alpha(\mathbf{K})\exp=1.5 + 4-2.$ $\alpha(\mathbf{K})=0.615 \ 9; \ \alpha(\mathbf{L})=0.0819 \ 12; \ \alpha(\mathbf{M})=0.01676 \ 24;$ $\alpha(\mathbf{N}+)=0.00406 \ 6$ $\alpha(\mathbf{N})=0.00354 \ 5; \ \alpha(\mathbf{O})=0.000493 \ 7; \ \alpha(\mathbf{P})=2.42\times10^{-5} \ 4$ $\alpha(\mathbf{K})\exp=0.56 \ 3, \ \mathbf{K}/\mathbf{L}=7.2 \ 3, \ \mathbf{L}/\mathbf{M}=1.8 \ 2.$

4

 $^{124}_{55}\mathrm{Cs}_{69}\text{-}4$

					¹²⁴ B	a ε decay	1986We0	1 (continued	<u>d)</u>
						γ (¹²⁴ C	s) (continu	ied)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger e}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult. ^C	δ^{c}	α^{f}	Comments
113.0 ^{@i}	≈0.06	301.12	(4)-	188.98	$(2)^{+}$				
$115.0^{@i} 2$	≈0.10	417.19	$(3,4)^+$	301.12	(4)-				
119.89 7	3.45 7	362.73	(3)+	242.88	$(3)^+$	M1		0.539	$\alpha(K)=0.462$ 7; $\alpha(L)=0.0613$ 9; $\alpha(M)=0.01255$ 18; $\alpha(N+)=0.00304$ 5
									$\alpha(N)=0.00265 4; \alpha(O)=0.000369 6; \alpha(P)=1.81\times10^{-5} 3$
123.5.1	1 17 6	312 /8	$(2)^{+}$	188 08	$(2)^{+}$	$M1\pm F2$	102	0.69.5	α (K)exp=0.43 +3-1, K/L=7.5 +5-4, L/M=4.8 4. α (K)=0.524, 23; α (L)=0.132, 17; α (M)=0.028 4;
125.5 1	1.17 0	512.40	(2)	100.90	(2)	W11+L2	1.0 2	0.07 5	$\alpha(N=0.52425, \alpha(E)=0.15217, \alpha(M)=0.0264, \alpha(N+)=0.00659$
									$\alpha(N)=0.0057 \ 8; \ \alpha(O)=0.00071 \ 9; \ \alpha(P)=1.74\times10^{-5} \ 3$
129.30 15	0.32 5	401.32	$(1,2)^+$	272.13	$(0,1)^+$	M1,E2		0.59 16	α (K)exp=0.46 4, K/L=4.1 5, L/M=2.8 9. α (K)=0.46 9; α (L)=0.11 6; α (M)=0.023 14; α (N+)=0.005 3
									$\alpha(N)=0.005$ 3; $\alpha(O)=0.0006$ 3; $\alpha(P)=1.52\times10^{-5}$ 6
130.70^{h} 15	<0.33h	401 32	$(1 2)^+$	270 32	$(3)^{+}$				α (K)exp=0.67 +19-13.
130.70^{h} 15	$0.13^{h} 2$	443.86	$(1,2)^+$	312.48	$(3)^+$				I_{γ} : From the intensity in the figure in 1986We01. I_{γ} =0.33 5
Ø									for a doublet.
$134.3^{\textcircled{0}}{}_{\sim 1/3}^{}a^{}$	≈0.14	404.31	$(1^+, 2^+)$ $(1, 2, 3)^+$	270.32	$(3)^+$ $(3)^+$				
$^{\sim}143$ 148.2 [@]	≤0.3	401.32	$(1,2,3)^+$	253.32	$(3)^{+}$				
151.0 ^h 1	0.48 ^h 15	362.73	(3)+	211.65	$(3)^+$				I _{γ} : From the intensity in the figure in 1986We01. I γ =1.69 15
									for a doublet. $\alpha(K) \exp -0.23$ 3 K/I = 4.2.4 for a doublet
151.0 ^h 1	1.21 ^h 15	404.31	$(1^+, 2^+)$	253.32	$(1)^{+}$				I_{γ} : From the intensity in the figure in 1986We01. I_{γ} =1.69 15
I.	L		. , ,						for a doublet.
156.87 ^{<i>n</i>} 7	2.68 ⁿ 10	505.60	$(1,2,3)^+$	348.76?					I_{γ} : From the intensity in the figure in 1986We01. I_{γ} =5.35 10 for a doublet
									α (K)exp=0.25 <i>I</i> , K/L=5.1 +27–14, L/M>2.4 for a doublet.
156.87 ^h 7	2.68 ^h 10	770.82	$(1,2,3)^+$	613.90	$(0,1,2)^+$				I_{γ} : From the intensity in the figure in 1986We01. I_{γ} =5.35 10
158.9 ^{@i}	≈0.27	401 32	$(1 2)^+$	242.88	$(3)^{+}$				for a doublet.
169.5 <i>1</i>	46.1 4	169.53	$(1,2)^+$ $(1)^+$	0.0	1^+	M1(+E2)	<0.6	0.217 12	α(K)=0.183 7; α(L)=0.027 5; α(M)=0.0057 10;
									$\alpha(N+)=0.00136\ 21$ $\alpha(N)=0.00110\ 10;\ \alpha(O)=0.000161\ 21;\ \alpha(P)=6.01\times10^{-6}\ 10$
									$\alpha(K) = 0.183 8$, K/L=7.4 3, L/M \approx 4.8.
170.2^{i} 2	1.1 2	613.90	$(0,1,2)^+$	443.86	$(1,2)^+$.0.0	0.000 10	
1/4.2 1	2.55 15	//0.82	$(1,2,3)^{+}$	596.63	·	M1(+E2)	<0.8	0.206 10	$\alpha(\mathbf{K})=0.1/2$ 9; $\alpha(\mathbf{L})=0.027$ 6; $\alpha(\mathbf{M})=0.0056$ 12; $\alpha(\mathbf{N}+)=0.0013$ 3
									α (N)=0.00117 24; α (O)=0.00016 3; α (P)=6.40×10 ⁻⁶ 10
185 7@	<0.4	307 61	(5)-	211.65	$(3)^{+}$				α (K)exp=0.16 2, K/L \approx 3.9, L/M \approx 1.4.
189.0 1	27.4 5	188.98	$(2)^+$	0.0	1^+	M1+E2	0.5 1	0.162 4	$\alpha(K)=0.136 \ 3; \ \alpha(L)=0.0209 \ 13; \ \alpha(M)=0.0043 \ 3;$

S

					¹²⁴ Ba	ε decay	1986We01 ((continued)
						γ (¹²⁴ Cs	s) (continued	<u>)</u>
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger \ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	$\mathbf{J}_{f}^{\pmb{\pi}}$	Mult. ^C	α^{f}	Comments
								α (N+)=0.00103 6 α (N)=0.00091 6; α (O)=0.000122 6; α (P)=5.09×10 ⁻⁶ 8 α (K)exp=0.126 6, K/L=6.6 +3-4, L/M=3.0 2.
189.0 ^{&i} 1		1433.4	0,1,2	1244.57	$(1)^{+}$			
189.7 [@]	≤1.0	401.32	$(1,2)^+$	211.65	(3)+			
192.70 ^{g&i} 15		362.73	$(3)^{+}$	169.53	$(1)^{+}$			
192.70 ^{g&} 15	1.9 <i>1</i>	404.31	(1 ⁺ ,2 ⁺)	211.65	(3)+	(M1,E2)	0.167 23	α (K)=0.136 <i>12</i> ; α (L)=0.025 <i>9</i> ; α (M)=0.0052 <i>19</i> ; α (N+)=0.0012 <i>4</i> α (N)=0.0011 <i>4</i> ; α (O)=0.00014 <i>4</i> ; α (P)=4.76×10 ⁻⁶ <i>13</i> α (K)=xp<0 13
211.6 1	9.2 2	211.65	(3)+	0.0	1+	E2	0.1375	$\alpha(\mathbf{K}) \approx 0.1085 \ I6; \ \alpha(\mathbf{L}) = 0.0230 \ 4; \ \alpha(\mathbf{M}) = 0.00485 \ 7; \ \alpha(\mathbf{N}+) = 0.001127 \ I6$
								α (N)=0.000998 <i>14</i> ; α (O)=0.0001257 <i>18</i> ; α (P)=3.49×10 ⁻⁶ <i>5</i> α (K)exp=0.114 <i>4</i> , K/L=3.9 <i>3</i> , L/M=2.8 <i>3</i> .
212.6 ^{h@} 2	<0.5 ^h	401.32	(1,2)+	188.98	$(2)^{+}$			I_{γ} : From the intensity in the figure in 1986We01. I_{γ} =0.70 15 for a doublet.
212.6 ^h 2	0.20 ^h 4	613.90	(0,1,2)+	401.32	$(1,2)^+$			I _{γ} : From the intensity in the figure in 1986We01. I γ =0.70 15 for a doublet.
≈230.1 ^{<i>h</i>}	0.15 ^h 5	512.29	(1,2,3)+	282.62	3+			I _{γ} : From the intensity in the figure in 1986We01. I γ =0.3 <i>I</i> for a doublet.
≈230.1 ^{<i>h</i>}	≈0.15 ^h	1244.57	$(1)^{+}$	1014.45				I _{γ} : From the intensity in the figure in 1986We01. I γ =0.3 <i>1</i> for a doublet.
≈232.6	0.5 1	401.32	$(1,2)^+$	169.53	$(1)^{+}$			
≈234.6 ^{h#}	0.2 ^{<i>h</i>} 1	404.31	(1+,2+)	169.53	$(1)^{+}$			I _{γ} : From the intensity in the figure in 1986We01. I γ =0.4 <i>1</i> for a triplet.
≈234.6 ^{h#}	≈0.2 ^h	596.17		362.73	$(3)^{+}$			I _{γ} : From the intensity in the figure in 1986We01. I γ =0.4 <i>I</i> for a doublet.
≈234.6 ^{#i}		596.63	+	362.73	$(3)^{+}$			
243.3 ^{gi} 3		242.88	$(3)^{+}$	0.0	1+			
243.3 ⁸ 3	0.75 15	1014.45		770.82	(1,2,3)+			$I\gamma=0.75$ 15 for a doublet. $\alpha(K)\exp\approx0.16$.
≈252.8		505.60	$(1,2,3)^+$	253.32	$(1)^{+}$			E_{γ} : one component of a triplet in authors' table.
253.25 ^h 15	12.1 ^h 3	253.32	$(1)^+$	0.0	1+	M1,E2	0.072 4	α (K)=0.0602 <i>11</i> ; α (L)=0.0097 <i>20</i> ; α (M)=0.0020 <i>5</i> ; α (N+)=0.00048 <i>10</i>
								α (N)=0.00042 9; α (O)=5.6×10 ⁻⁵ 9; α (P)=2.17×10 ⁻⁶ 17 α (K)exp=0.063 +5-4, K/L=5.8 +26-14, L/M=5.0 14. I _{γ} : From the intensity in the figure in 1986We01. I γ =13.3 3 for a triplet.
253.25 ^h 15	1.2 ^{<i>h</i>} 3	464.91	1,2	211.65	$(3)^+$			I_{γ} : From the intensity in the figure in 1986We01. I_{γ} =13.3 3 for a triplet.
258.6 3	0.3 1	512.29	$(1,2,3)^+$	253.32	$(1)^+$			
262.5 3	0.3 1	505.60	$(1,2,3)^+$	242.88	$(3)^{+}$			$\alpha(\mathbf{K})\exp\approx 0.12.$

6

From ENSDF

 $^{124}_{55}\mathrm{Cs}_{69}$ -6

 $^{124}_{55}\mathrm{Cs}_{69}$ -6

L

					¹²⁴ F	Ba ε decay	1986We0	1 (continued)
						$\gamma(^{12}$	²⁴ Cs) (continu	ed)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. ^C	α^{f}	Comments
270.30 15	7.26 30	270.32	(3)+	0.0	1+	E2	0.0609	$\alpha(K)=0.0494\ 7;\ \alpha(L)=0.00913\ 13;\ \alpha(M)=0.00191\ 3;\ \alpha(N+)=0.000449\ 7$ $\alpha(N)=0.000396\ 6;\ \alpha(O)=5.09\times10^{-5}\ 8;\ \alpha(P)=1.653\times10^{-6}\ 24$ $\alpha(K)\exp=0.019\ 2;\ K/L=3.3\ +18-9;\ L/M=2.7\ 16.$
272.2 2	7.7 4	272.13	$(0,1)^+$	0.0	1^+			
272.8 2 278.4 5	3.8 4 0.4 1	272.68 1049.23	$(2,3)^{+}$ 0,1	0.0 770.82	$(1,2,3)^+$			α (K)exp \approx 0.08. E _{γ} : complex line (1986We01).
283.7 ^{8#} 3	0.8 1	596.17		312.48	$(2)^{+}$			$I\gamma=0.8$ <i>l</i> for a doublet.
283.7 ^{8#i} 3		596.63	+	312.48	$(2)^{+}$			
283.7 ^{8#1} 3 287.6 3	<0.8 0.90 8	1216.62 557.98	(1^+) $(1,2)^+$	933.85 270.32	0,1 (3) ⁺	M1,E2	0.0497 8	I _γ : much less than 0.8. α (K)=0.0417 <i>12</i> ; α (L)=0.0064 <i>9</i> ; α (M)=0.00133 <i>20</i> ; α (N+)=0.00032 <i>5</i> α (N)=0.00028 <i>4</i> ; α (O)=3.7×10 ⁻⁵ <i>4</i> ; α (P)=1.52×10 ⁻⁶ <i>15</i>
291	<0.2	1388 90	(1^{+})	1097 88	0.1			$\alpha(\mathbf{K})\exp=0.00\ I.$
294.1 3	0.60 8	505.60	$(1,2,3)^+$	211.65	$(3)^+$	M1,E2	0.0466	$\alpha(K)=0.0391 \ 14; \ \alpha(L)=0.0060 \ 8; \ \alpha(M)=0.00124 \ 17; \ \alpha(N+)=0.00029 \ 4$
								$\alpha(N)=0.000264; \alpha(O)=5.5\times10^{-2}4; \alpha(P)=1.45\times10^{-2}15$ $\alpha(K)\exp\approx0.04.$
300.7 ^{gi} 3		301.12	(4) ⁻	0.0	1^{+}			
300.7 ⁸ 3 312.7 3	0.92 <i>9</i> 0.94 <i>10</i>	512.29 312.48	$(1,2,3)^+$ $(2)^+$	211.65 0.0	$(3)^+$ 1 ⁺	M1,E2	0.0390 11	α (K)=0.0328 <i>16</i> ; α (L)=0.0049 <i>5</i> ; α (M)=0.00102 <i>12</i> ; α (N+)=0.000243 <i>24</i>
								$\alpha(N)=0.000213\ 22;\ \alpha(O)=2.87\times10^{-5}\ 19;\ \alpha(P)=1.20\times10^{-6}\ 14$
320.6	0.3 1	1216.62	(1^{+})	895.7	0,1,2			$a(\mathbf{K})\exp=0.05\ 2.$
323.9 3	0.9 1	1244.57	$(1)^{+}$	920.69	$(0 \text{ to } 3)^+$	M1,E2	0.0353 13	α (K)=0.0297 17; α (L)=0.0044 4; α (M)=0.00091 9; α (N+)=0.000218 18
								$\alpha(N)=0.000191 \ 17; \ \alpha(O)=2.58\times10^{-5} \ 14; \ \alpha(P)=1.09\times10^{-6} \ 13 \ \alpha(K)\exp\approx0.04.$
326.9 4	1.0 2	1097.88	0,1	770.82	$(1,2,3)^+$	M1,E2	0.0343 <i>13</i>	$\alpha(K)=0.0290 \ 17; \ \alpha(L)=0.0043 \ 4; \ \alpha(M)=0.00089 \ 8; \ \alpha(N+)=0.000212 \ 17$
								$\alpha(N)=0.000186\ 16;\ \alpha(O)=2.51\times10^{-5}\ 13;\ \alpha(P)=1.06\times10^{-6}\ 13$ $\alpha(K)=xp\approx0.03.$
338.8 <mark>8&</mark> i 4		338.5?		0.0	1+			
338.8 <mark>8&</mark> 4	1.0 2	1259.84	(1^{+})	920.69	(0 to 3) ⁺			
353.9 ^h 1	0.70 ^{<i>h</i>}	596.63	+	242.88	$(3)^{+}$			E_{γ} , I_{γ} : this γ is multiplet including 2 ⁺ to 0 ⁺ transition in ¹²⁴ Xe. Values are from authors' drawing.
353.9 ⁱ	24.2	950.4?		596.63	+			I_{γ} : no intensity was given by authors.
362.9 5	∠.4 3 ≈0.1	362.73	$(3)^{+}$	0.0	1+			

 \neg

					¹²⁴ B	a ε decay	1986W	e01 (continu	ued)
						γ (¹²⁴ C	s) (conti	nued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger e}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult. ^C	δ ^C	α^{f}	Comments
369.0 <i>6</i> 374.2 <i>3</i>	<0.1 ^b 1.1 <i>I</i>	770.82 1388.90	$(1,2,3)^+$ (1^+)	401.32 1014.45	(1,2)+				
380.4 <i>5</i> 385.0 <i>4</i>	0.5 ^b 1 0.7 1	1244.57 596.63	$^{(1)^+}_{+}$	864.1 211.65	1,2 (3) ⁺				
388.2 5 392.5 4	<0.5 ^b 0.7 1	1388.90 1433.4	(1^+) 0,1,2	1000.91 1040.32	$0,1,2 \\ 0,1,2$				
$397.8^{g\&1}$ 5	051	397.61	$(5)^{-}$	0.0	1+				
401.6 3	0.3 <i>I</i> 4.4 ^b <i>I</i>	401.32	(1) $(1,2)^+$	0.0	1+	M1(+E2)	<0.8	0.0203 7	α (K)=0.0174 7; α (L)=0.00232 4; α (M)=0.000475 7; α (N+)=0.0001148 17 α (N)=0.0001003 15; α (O)=1.387×10 ⁻⁵ 24; α (P)=6.7×10 ⁻⁷ 4
404 2 5	0.8.7	404 31	$(1^+ 2^+)$	0.0	1+				α (K)exp=0.019 +3-2.
407.2 4	2.2 1	596.17	(1,2)	188.98	$(2)^{+}$				
413.3 5	≈0.3	1259.84	(1^{+})	846.5					
416.9 4	1.0 1	1168.62	0,1	751.65	(1^{+})				
432	≈0.15	770.82	$(1,2,3)^+$	338.5?					
439.1 4	0.7 1	751.65	(1^{+})	312.48	$(2)^+$				
445.0 <i>4</i> 454.6 ^{<i>8</i>} 5	<0.7 1 <0.4	846.5 920.69	(0 to 3) ⁺	401.32 464.91	(1,2)* 1,2				I_{γ} : From branching ratio in the figure in 1986We01. I γ =0.4 <i>l</i> for a doublet.
454.6 <mark>8</mark> 5	< 0.4	1388.90	(1^{+})	933.85	0,1				
458.3 ^{@i}	≈0.1	770.82	$(1,2,3)^+$	312.48	$(2)^{+}$				
464.4 4	1.2 <i>I</i>	464.91	1,2	0.0	1+				
≈470.5	≤0.3	1638.3?	0,1,2	1168.62	0,1				
473.7 3	4.50 15	1244.57	(1)+	770.82	(1,2,3)+	M1(+E2)	<0.8	0.0133 6	$\alpha(K)=0.0114 \ 6; \ \alpha(L)=0.00150 \ 4; \ \alpha(M)=0.000306 \ 7; \\ \alpha(N+)=7.40\times10^{-5} \ 18 \\ \alpha(N)=6.46\times10^{-5} \ 15; \ \alpha(O)=9.0\times10^{-6} \ 3; \ \alpha(P)=4.4\times10^{-7} \ 3 \\ \alpha(N)=0.015 \ 4$
479 4 3	241	751.65	(1^{+})	272.13	$(0,1)^+$				$\alpha(\mathbf{K})\exp=0.013 \ 4.$
482.3 4	1.6 l	671.42	0,1,2	188.98	$(2)^+$				
≈488.4 ^{<i>i</i>}	0.4 1	1259.84	(1^+)	770.82	$(1.2.3)^+$				
≈498.0	≈0.2	751.65	(1^+)	253.32	$(1)^+$				
≈527.8	≤0.2	770.82	$(1,2,3)^+$	242.88	$(3)^{+}$				
532.5 ^h 4	0.57 ^h 7	895.7	0,1,2	362.73	(3)+				I _{γ} : From branching ratio in the figure in 1986We01. I γ =0.8 <i>I</i> for a doublet.
532.5 ^h 4	0.23 ^h 3	933.85	0,1	401.32	(1,2)+				I _{γ} : From the intensity in the figure in 1986We01. I γ =0.8 <i>I</i> for a doublet.
558.0 ^h 3	$\approx 0.4^{h}$	557.98	$(1,2)^+$	0.0	1+				I_{γ} : From the intensity in the figure in 1986We01. $I_{\gamma}=1.4 I$ for a doublet.

From ENSDF

 $^{124}_{55}\mathrm{Cs}_{69}\text{-}8$

L

¹²⁴Ba ε decay **1986We01** (continued)

$\gamma(\frac{124}{Cs})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger e}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Comments
558.0 ^h 3	$\approx 1.0^{h}$	920.69	$(0 \text{ to } 3)^+$	362.73	$(3)^+$	I_{α} : From the intensity in the figure in 1986We01. I γ =1.4 l for a doublet.
562.7 4	0.6 1	751.65	(1^+)	188.98	$(2)^+$	
573.1 <i>3</i>	0.9 1	1244.57	$(1)^{+}$	671.42	0,1,2	
^x 578.6 4	0.5 1					
582.6 4	0.6 1	770.82	$(1,2,3)^+$	188.98	$(2)^{+}$	
≈593.2	≈0.3	864.1	1,2	270.32	$(3)^{+}$	
≈597.0	≤0.2	1000.91	0,1,2	404.31	$(1^+, 2^+)$	
≈601.9 ¹	≤0.2	770.82	$(1,2,3)^+$	169.53	$(1)^{+}$	
608.6 4	0.7 1	920.69	$(0 \text{ to } 3)^+$	312.48	$(2)^{+}$	
610.4 5	0.4 1	1014.45		404.31	$(1^+, 2^+)$	
≈618.1	≈0.1	1388.90	(1^+)	770.82	$(1,2,3)^+$	
620.6 3	2.0 1	1216.62	(1 ⁺)	596.17	(2, 2) +	
623.4 4	0.9 1	895.7	0,1,2	272.68	$(2,3)^+$	
≈638.1	≤ 0.2	1040.32	0,1,2	401.32	(1,2)	
648.3 ⁸¹ 3		920.69	$(0 \text{ to } 3)^+$	272.68	$(2,3)^+$	
648.38 3	0.17 2	1244.57	$(1)^{+}$	596.17	$(1, 0)^{+}$	I_{γ} : From the intensity in the figure in 1986We01. $I_{\gamma}=1.2$ I for a doublet.
≈659.1	≤0.4	1216.62	(1')	557.98	$(1,2)^{+}$	
666.2 ^w	< 0.2	1707.3	0,1,2	1040.32	0,1,2	
671.1 [@]	≤0.2	671.42	0,1,2	0.0	1+	
680.7 4	0.6 1	933.85	0,1	253.32	$(1)^{+}$	
^x 682.8 4	≤0.4					
686.5 4	0.4 1	1244.57	$(1)^{+}$	557.98	$(1,2)^+$	
693.9 5	0.3 1	1097.88	0,1	404.31	$(1^+, 2^+)$	
≈697 ⁴¹		1097.88	0,1	401.32	$(1,2)^+$	
≈701.9 _.	≈0.2	1259.84	(1^{+})	557.98	$(1,2)^+$	
≈707.4 ^ℓ	≈0.2	950.4?		242.88	$(3)^{+}$	
727.6 4	0.55 10	1131.93	1	404.31	$(1^+, 2^+)$	
≈731 ^{<i>a</i>}		1131.93	1	401.32	$(1,2)^+$	
751.7 2	6.6 3	751.65	(1^{+})	0.0	1+	
*753.8 4	1.0 1	11(0 (2	0.1	404.21	(1+ 0+)	
764.34	0.6 1	1168.62	0,1	404.31	$(1^+, 2^+)$	
$\approx /6/a^{\circ}$	071	1108.62	0,1	401.32	$(1,2)^+$	
708.9 4 ~771.6	~ 0.7 I	1014 45	1	242.88	$(3)^+$	
~771.0	~ 0.2	1014.45	(1)+	242.00	(3)	
/81 786 0 1	$\approx 0.1^{\circ}$	1244.57	(1)'	464.91	1,2	
/00.0 4 ~702.6	$\sim 0.3 I$	1040.52	(1^+)	233.32	$(1)^{-}$	
~192.0	$^{\sim 0.2}$	1049 23	01	253 32	$(1)^{+}$	
$\sim 802 \frac{1}{1000}$	~0.1	11/1 50	0.1.2	220 50	(1)	
~003.4 812.4.5	≈ 0.1	1216.62	(1^+)	338.3? 404 31	(1+2+)	
$\approx 815^{a}$	~0.2	1210.02	(1^{+})	401 32	$(1,2)^+$	
~015		1210.02	(1)	701.32	(1,2)	

¹²⁴Ba ε decay **1986We01** (continued)

$\gamma(^{124}Cs)$ (continued)

E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger \ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
819.0.4	0.30.7	1131 93	1	312.48 ($(2)^{+}$	
825.6 4	1.1 /	1097.88	0.1	272.13 ($(0,1)^+$	
831.4 4	0.7 1	1000.91	0,1,2	169.53 ($(1)^+$	
837.1 5	0.40 7	1433.4	0,1,2	596.17		
840.3 5	≈0.4	1244.57	$(1)^{+}$	404.31 ($(1^+, 2^+)$	
851.5 5	0.4 1	1040.32	0,1,2	188.98 ($(2)^{+}$	
859.2 4	0.7 1	1259.84	(1^{+})	401.32 ($(1,2)^+$	
864.0 4	0.8 ^b 2	864.1	1,2	0.0 1	1+	
≈878.3	≈0.3	1131.93	1	253.32 ($(1)^{+}$	
881.7 2	3.0 1	1244.57	$(1)^{+}$	362.73 ($(3)^+$	
888.6 5	≈0.15	1131.93	1	242.88 ($(3)^+$	
896.4 ^{gi} 4		895.7	0,1,2	0.0 1	1+	
896.4 ⁸ 4	< 0.70	1168.62	0,1	272.13 ($(0,1)^+$	
≈918.5	≤0.3	1589.4	0,1,2	671.42 (),1,2	
928.4 5	0.45 10	1097.88	0,1	169.53 ($(1)^+$	
932.1 <i>3</i>	3.6 1	1244.57	$(1)^{+}$	312.48 ($(2)^+$	
933.6 <i>3</i>	2.10 15	933.85	0,1	0.0 1	1+	
937.4 [@]	≈0.1	1707.3	0,1,2	770.82 ($(1,2,3)^+$	
943.5 5	0.6 1	1216.62	(1^{+})	272.68 ($(2,3)^+$	
946.5 3	2.50 15	1216.62	(1^{+})	270.32 ($(3)^+$	
963.0 ⁸ 3	<3.1	1131.93	1	169.53 ($(1)^+$	E_{γ} : complex line (1986We01).
						$I\gamma=3.10$ 15 for a doublet.
963.0 ⁸ 3	<3.1	1216.62	(1^{+})	253.32 ((1)+	
972.1 3	2.0 1	1244.57	$(1)^{+}$	272.68 ((2,3) ⁺	
974.2 4	0.66 12	1244.57	$(1)^{+}$	270.32 ($(3)^+$	
987.4 4	1.37 15	1388.90	(1^{+})	401.32 ([1,2) ⁺	
990.0 4	0.90 15	1259.84	(1^{+})	2/0.32 ((3)'	
1001.0 4	0.5 1	1000.91	0,1,2	0.0	[' (1)+	
1006.2 4	0.4 I	1259.84	(1^+)	255.52 ($(1)^{1}$	E (108(W-01)
1027.58 5	0.0 1	1210.02	(1)	100.90 ((2)	E_{γ} : complex line (1980 web1). $I_{\gamma} = 0.6 l$ for a doublet
1027.3 <mark>8</mark> 5	< 0.6	1388.90	(1^{+})	362.73 ($(3)^{+}$	
$1033.6^{i}.4$	0.30.7	1244 57	$(1)^+$	211.65 ((3)+	
1033.0 4	131	1040 32	(1) 012	211.05 ((<i>3)</i> 1+	
1047.1.3	3.0.1	1216.62	(1^+)	169 53 ((1)+	
1049 3 3	1 48 8	1049 23	01	0.0 1	1+	
1055.7 3	1.1 1	1244.57	$(1)^+$	188.98 ($(2)^{+}$	
$1071.08^{@}$	≈0.15	1259 84	(1^+)	188 98 ($(2)^{+}$	
1071.0^{2}	-0.15	1/33 /	012	362.73	(2)+	
1075.78.5	<0.55	1433.4	$(1)^+$	160.53	(J)+	$I_{0}=0.55$ 15 for a doublet
1075.70°	<0.55 -0.55	1299.00	(1)	107.33 ((1) (2)+	$1_{\gamma} = 0.55 \ 15 \ 101 \ a \ u0 \ u0 \ i \ ci.$
10/5./0° 5	< 0.55	1388.90	(1^+)	312.48 (160.53 ($(2)^{+}$	
1090.2 2	2.9 1	1239.84	(1^{+})	109.33 ((1)	

¹²⁴Ba ε decay **1986We01** (continued)

$\gamma(^{124}Cs)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger e}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Comments
1097.9 <i>3</i>	1.8 1	1097.88	0,1	0.0 1+	
1116.2 4	1.0 1	1388.90	(1^{+})	272.68 (2,3) ⁺	
1131.9 4	≈0.3 ^b	1131.93	1	0.0 1+	
1141.6 ^{@i}	≈0.25	1141.58	0,1,2	0.0 1+	
1168.8 4	0.50 5	1168.62	0,1	$0.0 1^+$	
1216.7 2	17.0 2	1216.62	(1^{+})	$0.0 1^+$	
1219.4 4	1.1 <i>I</i>	1388.90	(1^{+})	169.53 (1)+	
1244.2 [@]	≈0.2	1244.57	$(1)^{+}$	0.0 1+	
1259.7 4	1.4 <i>l</i>	1259.84	(1^{+})	$0.0 1^+$	
1388.9 4	1.1 <i>1</i>	1388.90	(1^{+})	$0.0 1^+$	
1400.5 5	0.4 1	1589.4	0,1,2	188.98 (2)+	
1434.3 <mark>8</mark> 5	< 0.5	1433.4	0,1,2	0.0 1+	$I\gamma=0.5$ <i>I</i> for a doublet.
1434.3 <mark>8</mark> 5	< 0.5	1623.2	0,1,2	$188.98(2)^+$	
1453.2 <mark>8@</mark>	≈0.3	1623.2	0,1,2	169.53 (1)+	
1453.2 <mark>8@</mark>	< 0.3	1707.3	0,1,2	253.32 (1)+	I_{γ} : much less than 0.3.
1589.3 4	1.5 <i>1</i>	1589.4	0,1,2	$0.0 1^+$	
≈1623 [@]	≈0.1	1623.2	0,1,2	0.0 1+	
1638.2 [@]	≈0.3	1638.3?	0,1,2	0.0 1+	
1708.0 10	0.5 1	1707.3	0,1,2	0.0 1+	

11

[†] From 1986We01.

¹ Relative to I(354 γ in ¹²⁴Xe from ¹²⁴Cs decay)=100. For doublets or triplets, intensity of each component is from authors' drawing. Uncertainty was not assigned to these components by authors.

[#] A doublet in authors' table but a triplet in their drawing.

[@] Very weak line identified from coin.

[&] A singlet in authors' table but a doublet in their drawing.

^{*a*} Given in authors' drawing, but not in their table.

^b Intensity deduced after subtraction of the one related to 124 Cs decay to 124 Xe.

^c From K/L and/or α (K)exp or from α (L)exp in 1986We01.

 $d \alpha(exp)$ values were given for unresolved electron lines of both 102.6- and 103.16-keV transitions.

^e For absolute intensity per 100 decays, multiply by 0.47 6.

f Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*g*} Multiply placed.

^h Multiply placed with intensity suitably divided.

^{*i*} Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

¹²⁴₅₅Cs₆₉

¹²⁴₅₅Cs₆₉

---69

¹²⁴Ba ε decay 1986We01

¹²⁴₅₅Cs₆₉