¹²⁴Cs IT decay **1983We07**

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	J. Katakura, Z. D. Wu	NDS 109, 1655 (2008)	1-Apr-2008							

Parent: ¹²⁴Cs: E=462.54 9; $J^{\pi}=(7)^+$; $T_{1/2}=6.3$ s 2; %IT decay=100.0

The decay scheme is that proposed by 1983We07.

1983We07: activity Ce+³He (E=280 MeV), ms; measured: γ , ce, $\gamma\gamma$, γ -K x ray, $\gamma\gamma$ (t), γ -ce.

Others: 1981Li08, 1981LiZN; these are previous papers of 1983We07.

The unplaced γ 's probably depopulate levels at 169.5 and 270.2 keV.

¹²⁴Cs Levels

E(level) [†]	J π ‡	T _{1/2}	Comments
0.0	1+	30.8 s 5	
169.5 <i>1</i>	$(1)^{+}$		
189.00 5	$(2)^{+}$		
211.62 5	$(3)^{+}$		
242.87 6	$(3)^{+}$		
270.3 1	$(3)^{+}$		
301.10 6	$(4)^{-}$	69 ns <i>3</i>	$T_{1/2}$: from $\gamma\gamma(t)$ (1983We07).
397.65 8	(5)-		
462.54 9	$(7)^{+}$	6.3 s 2	$T_{1/2}$: from 1983We07.

[†] From a least-squares fit to $E\gamma$'s.

[‡] From Adopted Levels.

$\gamma(^{124}\mathrm{Cs})$

 α (K)exp normalized with respect to 89.5 γ which has typical characteristics of an E1.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α@	Comments
53.85 5	0.42 4	242.87	(3)+	189.00 (2) ⁺	M1	5.37	$\alpha(K)=4.60\ 7;\ \alpha(L)=0.618\ 9;\ \alpha(M)=0.1266\ 18;\ \alpha(N+)=0.0306\ 5$ $\alpha(N)=0.0267\ 4;\ \alpha(O)=0.00371\ 6;\ \alpha(P)=0.000181\ 3$ $\alpha(K)=xp=3\ 2\ 10\ K/l=6\ +3-2$
58.20 5	1.23 6	301.10	(4)-	242.87 (3)+	E1	0.974	B(E1)(W.u.)= $3.8 \times 10^{-6} 3$ $\alpha(K)=0.825 12; \alpha(L)=0.1189 17; \alpha(M)=0.0242 4;$ $\alpha(N+)=0.00565 8$ $\alpha(N)=0.00498 7; \alpha(O)=0.000644 10; \alpha(P)=2.39\times 10^{-5} 4$
64.90 5	0.15 <i>3</i>	462.54	(7)+	397.65 (5)-	M2	46.9	α (K)exp=1.15 22, K/L=9 +4-2. B(M2)(W.u.)=3.4×10 ⁻⁶ 10 α (K)=35.6 5; α (L)=8.90 13; α (M)=1.94 3;
							α (N+)=0.466 7 α (N)=0.409 6; α (O)=0.0548 8; α (P)=0.00227 4 α (K)exp=27 +7-6, K/L=4.2 4, L/M=3.9 4. Mult.: from K/L and α (K)exp.
89.50 <i>5</i>	3.10 10	301.10	(4)-	211.62 (3) ⁺	E1	0.299	B(E1)(W.u.)=2.64×10 ⁻⁶ 17 α (K)=0.255 4; α (L)=0.0347 5; α (M)=0.00705 10; α (N+)=0.001665 24 α (N)=0.001463 21; α (O)=0.000194 3; α (P)=7.85×10 ⁻⁶ 11
							K/L=6.9 14, L/M=2.3 6.

¹²⁴Cs IT decay 1983We07 (continued) γ ⁽¹²⁴Cs) (continued) α[@] $I_{\gamma}^{\dagger \#}$ δ^{\ddagger} Mult.[‡] Ex E_i (level) Comments 3.05 10 397.65 $(5)^{-}$ $301.10(4)^{-1}$ M1+E2 0.7 3 1.36 22 $\alpha(K)=1.02 \ 10; \ \alpha(L)=0.28 \ 10;$ 96.55 5 $\alpha(M)=0.059\ 21;\ \alpha(N+..)=0.014\ 5$ $\alpha(N)=0.012$ 5; $\alpha(O)=0.0015$ 5; $\alpha(P)=3.47\times10^{-5}$ 9 α (K)exp=1.03 8, K/L=7.7 5, L/M=3.2 2. Mult.: from K/L and α (K)exp. δ : from $\alpha(K)$ exp. 161.0 ≈0.05 462.54 301.10 (4)-2.31 *α*(K)=1.179 *17*; *α*(L)=0.889 *13*; $(7)^{+}$ (E3) $\alpha(M)=0.198 3; \alpha(N+..)=0.0448 7$ $\alpha(N)=0.0401$ 6; $\alpha(O)=0.00463$ 7; $\alpha(P)=3.39\times10^{-5}$ 5 Additional information 1. I_{γ} : from ce(K)(161 γ)/ce(K)(65 γ)=44 4/4350 150. K/L=1.0 3. Mult.: from K/L. 169.5 1 0.34 5 169.5 $(1)^{+}$ 0.0 1^{+} M1(+E2) < 0.6 0.217 12 $\alpha(K)=0.183$ 7; $\alpha(L)=0.027$ 5; $\alpha(M)=0.0057 \ 10; \ \alpha(N+..)=0.00136 \ 21$ $\alpha(N)=0.00119 \ 19; \ \alpha(O)=0.000161 \ 21;$ $\alpha(P) = 6.91 \times 10^{-6}$ 10 $\alpha(K) \exp = 0.144 \ 35.$ 188.98 5 $(2)^{+}$ 0.0 1^{+} 0.5 1 $\alpha(K)=0.136 3; \alpha(L)=0.0209 13;$ 1.6 1 189.00 M1+E2 $0.162 \ 4$ $\alpha(M)=0.0043$ 3; $\alpha(N+..)=0.00103$ 6 α (N)=0.00091 6; α (O)=0.000122 6; $\alpha(P)=5.09\times10^{-6}$ 8 α(K)exp=0.141 15, K/L=6.1 5, L/M=1.1 2 211.64 5 $(3)^{+}$ 0.0 1^{+} 0.1374 3.3 1 211.62 E2 $\alpha(K)=0.1085 \ 16; \ \alpha(L)=0.0229 \ 4;$ $\alpha(M)=0.00484$ 7; $\alpha(N+..)=0.001126$ 16 $\alpha(N)=0.000997$ 14; $\alpha(O)=0.0001256$ 18; $\alpha(P)=3.48\times10^{-6}$ 5 α(K)exp=0.120 7, K/L=4.7 4, L/M=4.0 9. $(3)^{+}$ 0.0 1+ E2 0.0609 $\alpha(K)=0.0494$ 7; $\alpha(L)=0.00913$ 13; 270.3 1 0.62 5 270.3 α(M)=0.00191 3; α(N+..)=0.000449 7 α (N)=0.000396 6; α (O)=5.09×10⁻⁵ 8; $\alpha(P)=1.653\times10^{-6}\ 24$ Mult.: From adopted gammas. $\alpha(K) \exp \approx 0.025.$

[†] From 1983We07.

^{\ddagger} From ¹²⁴Ba ε decay, unless otherwise noted.

[#] For absolute intensity per 100 decays, multiply by 15.0 10.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

