History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	J. Katakura, Z. D. Wu	NDS 109,1655 (2008)	1-Apr-2008				

 $Q(\beta^{-})=-1.18\times 10^{4} \text{ syst}; S(n)=1.27\times 10^{4} \text{ syst}; S(p)=3.6\times 10^{3} \text{ syst}; Q(\alpha)=1.5\times 10^{3} \text{ syst}$ 2012Wa38 Note: Current evaluation has used the following Q record -1.169E4 SY1.272E4 SY3.41E3 SY1.64E3 syst 2003Au03. Uncertainties: 670 for $Q(\beta^{-})$, 420 for S(n) 360 for S(p), 420 for Q(α) (2003Au03).

¹²⁴Ce Levels

Quasiparticle notations (2004Sm02):

A: $\nu 5/2[402]$, $\alpha = +1/2$.
B: $v5/2[402]$, $\alpha = -1/2$.
C: $\nu 3/2[411], \alpha = +1/2.$
D: $v3/2[411]$, $\alpha = -1/2$.
E: $v7/2[523]$, $\alpha = -1/2$.
F: $v7/2[523]$, $\alpha = +1/2$.
G: $v5/2[532], \alpha = -1/2.$
H: $v5/2[532]$, $\alpha = +1/2$.
a: $\pi 1/2[420]$, $\alpha = +1/2$.
b: $\pi 1/2[420]$, $\alpha = -1/2$.
c: $\pi 5/2[413]$, $\alpha = -1/2$.
d: $\pi 5/2[413]$, $\alpha = +1/2$.
e: $\pi 3/2[541]$, $\alpha = -1/2$.
f: $\pi 3/2[541]$, $\alpha = +1/2$.
g: $\pi 1/2[550]$, $\alpha = -1/2$.
h: $\pi 1/2[550]$, $\alpha = +1/2$.

Cross Reference (XREF) Flags

- **A** 124 Pr ε decay
- **B** 125 Nd ε p decay
 - $(HI,xn\gamma)$

С

E(level) [†]	J ^{π &}	T _{1/2}	XREF	Comments
0.0‡	0+	6 s 2	ABC	$\%\varepsilon + \%\beta^+ = 100$
				$T_{1/2}$: from multiscaling of K x-ray (1978Bo32).
141.90 ⁴ 20	2+	0.88 ns 19	ABC	$T_{1/2}$: from DSA (1995Ma96). 2001Ra27 evaluation gives 0.88 ns 19.
447.8 [‡] 3	4+	19 ps 6	BC	T _{1/2} : from DSA (1995Ma96). Upper limit because of insufficient correction of long-lived component.
891.9 [‡] 4	6+		С	
1450.7 [‡] 4	8+		С	
1849.8 [@] 5	(7-)		С	
2100.9 [‡] 5	10^{+}		С	
2127.7 [@] 5	(9 ⁻)		С	
2183.9 [#] 5	(8 ⁺)		С	
2509.9 [@] 5	(11^{-})		С	
2600.6 [#] 5	(10^{+})		С	
2818.3 [‡] 5	12^{+}		С	
2984.1 [@] 5	(13-)		С	

Adopted Levels, Gammas (continued)

				¹²⁴ Ce Levels (continued)					
E(level) [†]	Jπ&	XREF	E(level) [†]	Jπ&	XREF	E(level) [†]	Jπ&	XREF	
3072.5 [#] 5	(12^{+})	С	5584.5 [#] 6	(20 ⁺)	С	8620.7 [@] 13	(27 ⁻)	С	
3544.0 [@] 6	(15 ⁻)	С	5724.2 [@] 7	(21-)	С	8947.2 [‡] 16	(26^+)	С	
3544.6 [‡] 5	14+	С	5848.2 [‡] 7	20^{+}	С	9334.7 [#] 19	(28^+)	С	
3592.8 [#] 5	(14^{+})	С	6402.7 [#] 7	(22^{+})	С	9733.7 [@] 16	(29 ⁻)	С	
4182.9 [#] 6	(16 ⁺)	С	6611.2 [@] 7	(23 ⁻)	С	10177.2 [‡] <i>19</i>	(28^{+})	С	
4189.3 [@] 6	(17 ⁻)	С	6788.2 [‡] 7	(22^{+})	С	10483.7? [#] 21	(30^{+})	С	
4239.2 [‡] 6	16+	С	7304.7 [#] 12	(24^{+})	С	10921.7? [@] 19	(31 ⁻)	С	
4846.2 [#] 6	(18^{+})	С	7577.6 [@] 7	(25 ⁻)	С	11502.2? [‡] 21	(30^{+})	С	
4916.7 [@] 6	(19 ⁻)	С	7818.2 [‡] <i>12</i>	(24^{+})	С	11734.7? [#] 24	(32^{+})	С	
4997.6 [‡] 6	18^{+}	С	8284.7 [#] 16	(26^{+})	С				

[†] From least-squares fit to Eγ's (by compilers).
[‡] Band(A): g.s. band. Quasiparticle vacuum at low spins; possible EF neutron alignment at higher spins.
[#] Band(B): K^π=2⁺; πfg (?). At higher spins possible alignment of vEF and/or πeh.
[@] Band(C): K^π=3⁻; π3/2[541]⊗π3/2[422]. At higher spins possible alignment of vEF and/or πfg.
[&] These are those reported by 2004Sm02 and based on the listed γ multipolarities and the usual considerations of band structure.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.
141.90	2^{+}	141.9 2	100	0.0	0^{+}	E2
447.8	4+	305.9 2	100	141.90	2+	E2
891.9	6+	444.1 2	100	447.8	4+	Q
1450.7	8+	558.9 2	100	891.9	6+	Q
1849.8	(7^{-})	956 <i>1</i>	100	891.9	6+	
2100.9	10^{+}	649.6 [‡] 2	100	1450.7	8+	Q
2127.7	(9^{-})	277.8 2	33 10	1849.8	(7^{-})	-
	. ,	677.4 2	100 5	1450.7	8+	D
2183.9	(8^{+})	1291 <i>1</i>	100	891.9	6+	
2509.9	(11^{-})	382.5 2	100 4	2127.7	(9 ⁻)	Q
		408.7 2	42 3	2100.9	10^{+}	D
2600.6	(10^{+})	416.6 2	100 25	2183.9	(8^{+})	
		1150.3 2	6.8 5	1450.7	8+	Q
2818.3	12^{+}	717.4 2	100	2100.9	10^{+}	Q
2984.1	(13-)	474.2 2	100	2509.9	(11^{-})	Q
3072.5	(12^{+})	472.3 2	100 25	2600.6	(10^{+})	Q
		971.2 2	88 8	2100.9	10^{+}	Q
3544.0	(15^{-})	559.9 2	100	2984.1	(13^{-})	Q
3544.6	14^{+}	726.3 2	100	2818.3	12^{+}	Q
3592.8	(14^{+})	520.3 2	100	3072.5	(12^{+})	
4182.9	(16^{+})	590.1 2	100	3592.8	(14^{+})	Q
4189.3	(17^{-})	645.3 2	100	3544.0	(15^{-})	Q
4239.2	16+	694.6 2	100	3544.6	14^{+}	Q
4846.2	(18^{+})	663.3 2	100	4182.9	(16^{+})	Q
4916.7	(19 ⁻)	727.4 2	100	4189.3	(17^{-})	Q
4997.6	18^{+}	758.3 2	100	4239.2	16+	Q
5584.5	(20^{+})	738.3 2	100	4846.2	(18^{+})	Q
5724.2	(21^{-})	807.5 2	100	4916.7	(19 ⁻)	
5848.2	20^{+}	850.6 2	100	4997.6	18^{+}	Q
6402.7	(22^{+})	818.2 2	100	5584.5	(20^{+})	

 $\gamma(^{124}\text{Ce})$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{124}\text{Ce})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	$E_f \qquad J_f^{\pi}$	
6611.2	(23^{-})	887.0 2	100	5724.2 (21 ⁻)	9334.7	(28^{+})	1050 <i>1</i>	100	8284.7 (26+))
6788.2	(22^{+})	940.0 2	100	5848.2 20+	9733.7	(29^{-})	1113 <i>1</i>	100	8620.7 (27-))
7304.7	(24^{+})	902 1	100	6402.7 (22 ⁺)	10177.2	(28^{+})	1230 <i>1</i>	100	8947.2 (26+))
7577.6	(25^{-})	966.4 2	100	6611.2 (23 ⁻)	10483.7?	(30^{+})	1149 <i>1</i>	100	9334.7 (28+))
7818.2	(24^{+})	1030 <i>1</i>	100	6788.2 (22+)	10921.7?	(31^{-})	1188 <i>1</i>	100	9733.7 (29-))
8284.7	(26^{+})	980 <i>1</i>	100	7304.7 (24 ⁺)	11502.2?	(30^{+})	1325 <i>1</i>	100	10177.2 (28+))
8620.7	(27^{-})	1043 <i>1</i>	100	7577.6 (25-)	11734.7?	(32^{+})	1251 <i>1</i>	100	10483.7? (30+))
8947.2	(26^{+})	1129 <i>1</i>	100	7818.2 (24 ⁺)						

[†] These are those reported by 2004Sm02. These are based on DCO data and band structure considerations. When the life time is given, DCO and RUL are used. [‡] Level-energy difference=650.3.

Level Scheme

Intensities: Relative photon branching from each level

¹²⁴₅₈Ce₆₆

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹²⁴₅₈Ce₆₆

¹²⁴₅₈Ce₆₆