(HI,xnγ) 1990Pi11,1989Ko19,1988Ma49

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. Katakura, Z. D. Wu	NDS 109, 1655 (2008)	1-Apr-2008

1990Pi11: 94 Zr(34 S,4n γ) E=145 MeV, 110 Cd(16 O,2n γ) E=60 MeV; array of Compton suppressed Ge with multiplicity and sum-energy filter; measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$ DCO ratios.

1989Ko19: ¹¹¹Cd(¹⁶O,3nγ) E=65 MeV, ¹¹²Cd(¹⁶O,4nγ) E=85 MeV; Ge, sum-energy filter; measured Eγ, Iγ, γγ-coin, γ(θ).
1988Ma49: supersedes 1987Ma12; ⁹⁶Zr(³⁴S,6nγ) E=160 MeV, ¹¹⁰Cd(¹⁸O,4nγ) E=80 MeV; Compton suppressed Ge with multiplicity and sum-energy filter; measured Eγ, Iγ, γγ-coin, γ(θ), linear polarization.

2005Ma84,2005Mb05: ⁶⁴Ni+⁶⁴Ni E=255-261 MeV; Euroball, Linear polarization.

1998Uc01: ¹⁰⁹Ag(¹⁹F,4n); E=75 MeV, 0.5 mg/cm² thick 99.4% enriched Ag self-supporting foil target, 57 mg/cm² thick natural Pb foil stopper, HPGe detectors, measured lifetime by means of $\gamma\gamma$ -coin recoil-distance Doppler-shift(RDDS) method.

Others: ${}^{94}Mo({}^{33}S,2pn\gamma) E=150 \text{ MeV} (1989Wy01); {}^{110}Cd({}^{16}O,2n\gamma) E=66 \text{ MeV} (1974Co36); {}^{115}In({}^{14}N,5n\gamma) E=84 \text{ MeV}, {}^{116}Sn({}^{12}C,4n\gamma) E=80 \text{ MeV} (1967Cl02).$

¹²⁴Ba Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	0+		
229.91 [#] 10	2^{+}	191 ps 8	T _{1/2} : From RDDS(1998Uc01).
651.67 [#] <i>13</i>	4+	-	
873.20 ^e 12	2^{+}		
1162.04 ^d 14	(3 ⁺)		
1228.40 [#] 14	6+		
1324.77 ^e 13	4^{+}		
1672.25 ^d 16	(5 ⁺)		
1721.7 8	(3 ⁻)		J^{π} : from negative polarization of 312 keV γ from (4 ⁻) level At 2034 keV and γ to 2 ⁺ level At 230 keV.
1858.14 ^e 15	$(6)^{+}$		
1912.76 ^{&} 19	5-		
1923.32 [#] 16	8+		
2033.55 ^a 19	(4 ⁻)		
2261.72 ^{&} 16	$(7)^{-}$		
2267.01 ^b 19	5-		
2285.32 ^d 19	(7^{+})		
2359.37 ^a 18	(6)-		
2479.04 ^e 18	(8 ⁺)		
2497.5° 3	(6 ⁻)		
2647.42 ⁰ 24	(7^{-})		
2688.17# 22	(10^{+})		
2690.73	$(\mathbf{Q})^{-}$		
$2704.05^{\circ}10$	$(0)^{-}$		
2721.32° 18 2906 4 [°] 3	(9) (8^{-})		
$2975 \ 19^{d} \ 21$	(0^+)		
$31097^{b}3$	(9^{-})		
3156.60^a 24	(10^{-})		
3177.1 ^e 5	(10^+)		
3286.69 ^{&} 20	$(11)^{-}$		
3335.5 [°] 4	(10 ⁻)		

				124	Ba Leve	ls (continued)	
E(level) [†]	J ^{π‡}	E(level) [†]	J ^π ‡	E(level) [†]	J π ‡	E(level) [†]	J ^π ‡
3436.8 [@] 3	(12 ⁺)	4603.8 ^c 5	(14 ⁻)	6081.0 [#] 7	(18+)	7866.8? <mark>b</mark> 9	(21 ⁻)
3591.5 ^b 4	(11 ⁻)	4761.6 ^{&} 3	(15 ⁻)	6290.3 ^a 8	(18 ⁻)	7984.0 [#] 9	(22^{+})
3692.3 [#] 4	(12 ⁺)	4893.1 [@] 6	(16 ⁺)	6382.9 [°] 7	(18 ⁻)	8512.2 ^{&} 9	(23 ⁻)
3694.0 ^d 3	(11^{+})	5009.7 <mark>b</mark> 5	(15 ⁻)	6555.8 <mark>&</mark> 7	(19 ⁻)	8795.1 [@] 10	(24 ⁺)
3772.4 ^{<i>a</i>} 4	(12 ⁻)	5216.4 [#] 6	(16 ⁺)	6711.8 [@] 8	(20^{+})	9054.0 [#] 10	(24+)
3891.4 ^c 5	(12 ⁻)	5392.2 ^a 7	(16 ⁻)	6870.8 ^b 8	(19 ⁻)	9612.9 ^{&} 10	(25 ⁻)
3967.99 ^{&} 22	(13)-	5445.9 [°] 6	(16 ⁻)	7000.0 [#] 8	(20^{+})	9951.4 [@] 10	(26 ⁺)
4126.5 [@] 4	(14^{+})	5638.7 <mark>&</mark> 5	(17 ⁻)	7229.8 ^a 9	(20 ⁻)	11183.2 [@] 11	(28+)
4227.9 ^b 5	(13 ⁻)	5725.6 7		7365.9 [°] 8	(20 ⁻)	12491.9 [@] 12	(30 ⁺)
4407.9 [#] 4	(14^{+})	5763.8 [@] 7	(18 ⁺)	7502.4 <mark>&</mark> 8	(21 ⁻)	13881.0 [@] 13	(32 ⁺)
4534.1 ^{<i>a</i>} 6	(14 ⁻)	5905.8 <mark>b</mark> 7	(17 ⁻)	7717.1 [@] 9	(22 ⁺)	15336.0 [@] 13	(34+)

 $(HI,xn\gamma)$

1990Pi11,1989Ko19,1988Ma49 (continued)

[†] From a least-squares fit to $E\gamma's$.

[‡] From Adopted Levels.

Band(A): band 1; g.s. band.

@ Band(B): band 6; S-band.

[&] Band(C): Band 2; odd J, π =- possible configuration [1/2-(550) + 3/2+(422)] π .

^{*a*} Band(D): Band 3; even J, π =- possible configuration [1/2-(550) + 3/2+(420)] π or [1/2-(550) + 3/2[422]] π .

^b Band(E): Band 4; odd J, π =- possible configuration [1/2-(550) + 9/2+(404)] π .

^c Band(F): Band 5; even J, π =- possible configuration [1/2-(550) + 9/2+(404)] π .

^d Band(G): band 8; γ -band, odd J.

^{*e*} Band(H): band 7; γ -band, even J.

$\gamma(^{124}\text{Ba})$

Gamma-ray energies and intensities in in-beam gamma-ray spectroscopy

	1990	Pi11	1988Ma49	1989Koi	19	$\frac{111}{100} cd(^{16}0 - 3m_2)$
Lourol	Eu	, 2117) Tar		5,4117) Ear	Tar	cu(0, 5117)
Level	Ľγ	⊥γ	⊥γ	Ľγ	Lγ	
229.8	229.8	104.0	100	229.9 1	100 2	
651.7	421.3	100.0	99	421.5 1	94 2	
873.2	642.7	2.3		643.4 1	1.6 5	
	872.5	0.6		873.3 <i>3</i>	0.7 3	
1162.0	510.9	4.3**		510.0 1	n	
	932.2	4.4	1	932.8 <i>2</i>	5.0 23	
1228.4	576.4	76.2	79	576.9 1	70 3	
1324.7	451.4	5.5**	39&	451.7 1	5.0 5**	
	672.8	6.2	13	673.1 <i>1</i>	6.4 10	
	1094.1	1.2		1094.5 3	0.5 2	
1672.2	444.4	1.1**				
	509.9	4.3**				
	1020.8	3.7		1020.8 <i>2</i>	2.4 5	
1858.1	533.2	3.0	4	533.4 1	3.0 2	
	629.6	0.6	4	629.7 1	3.2 6	
1912.7	684.6	1.1	3			
	1261.0	5.4	5	1260.6 3	4.1 6	
1923.3	694.8	38.5	58	695.1 <i>1</i>	45 3	
2033.5	I1381.8	2.1	2	1381.6 3	1.8 2	
2261.7	338.4	0.2	2			
	348.6	0.7&	1	349.0 3	0.4 2	
	1033.2	12.6	11	1033.3 1	9.2 12	
2267.0	354.0	0.7	6			

	942.2	1.6	5	942.4 2	2.1 3
	1038.6	1.6	1		
	1615.0	1.5	1	1614.5 <i>8</i>	1.2 4
2285.3	612.2	3.6		612.7 <i>2</i>	2.8 5
	1056.6	1.4		1057.0 <i>2</i>	1.3 2
2359.4	325.4	1.3	2	325.8 1	1.4 2
	446.2	3.0	3	446.5 2	2.8 13
	1130.8	4.4	4	1130.9 2	4.0 10
2479 0	555 7	2 2**	-	110010 1	110 10
2175.0	620 9	2.2		620 9 1	365
2407 5	220.7	5.08		020.5 1	5.0 5
2497.3	230.7	5.00			
2647 4	024.9	0.5			
2047.4	200.1	0.0			
	380.3	1.2			
	385.7	2.0	4		
	789.3	0.9			
2688.2	763.8	22.4	43	764.6 2	27 4
2690.7	192.9	3.6	6	193.2 1	4.9 6
2704.9	345.3	6.1	6	345.4 1	4.8 3
	442.9	1.1**	1		
	781.3	3.2	7**	781.8 2	3.3 9**
2721.5	459.6	5.1	9	459.8 1	5.5 10
	798.0	10.0	14	798.4 2	8.3 13
2906.4	215.8	2.5	3	215.7 1	3.5.5
	408 7	0 7	2	21017 2	
2975 2	691 2	0.7	2		
2515.2	1052 0	0 7			
2100 7	202.2	0.7			
5109.7	203.2 405.1	0.3	F		
	405.1	0.9	5		
2156 6	462.3	2.5	4		
3156.6	435.3	0.3	1		
	452 0	5 5**	7 &	1 5 1 7 1	5 10 5**
	472.0	5.5	760	451.7 1	J.0 J
3177.	1 698.1	2.0	700	431.7 1	5.0 5
3177. 3286.7	1 698.1 564.7	2.0 8.0	13	451.7 <i>1</i> 565.3 <i>1</i>	8.6 6
3177. 3286.7	1 698.1 564.7 598.9	2.0 8.0 3.6	13 2	431.7 1 565.3 1 599.5 1	8.6 <i>6</i> 2.8 <i>6</i>
3177. 3286.7 3335.5	1 698.1 564.7 598.9 225.8	2.0 8.0 3.6 0.6	13 2	431.7 1 565.3 1 599.5 1	8.6 6 2.8 6
3177. 3286.7 3335.5	1 698.1 564.7 598.9 225.8 429.0	2.0 8.0 3.6 0.6 1.4	13 2	431.7 1 565.3 1 599.5 1	8.6 6 2.8 6
3177. 3286.7 3335.5 3436.8	1 698.1 564.7 598.9 225.8 429.0 748.4	2.0 8.0 3.6 0.6 1.4 10.9	13 2 29	431.7 1 565.3 1 599.5 1 748.8 2	8.6 6 2.8 6 16 4
3177. 3286.7 3335.5 3436.8 3591.5	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0	2.0 8.0 3.6 0.6 1.4 10.9 2.7	13 2 29 17**	431.7 1 565.3 1 599.5 1 748.8 2	8.6 6 2.8 6 16 4
3177. 3286.7 3335.5 3436.8 3591.5	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6	13 2 29 17**	451.7 1 565.3 1 599.5 1 748.8 2	8.6 6 2.8 6 16 4
3177. 3286.7 3335.5 3436.8 3591.5 3692.3	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5	13 2 29 17**	451.7 1 565.3 1 599.5 1 748.8 2	8.6 6 2.8 6 16 4
3177. 3286.7 3335.5 3436.8 3591.5 3692.3	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 1004.2	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6	13 2 29 17** 17**	431.7 1 565.3 1 599.5 1 748.8 2	8.6 6 2.8 6 16 4
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 1004.2 718.1	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9&	13 2 29 17** 17** 8	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2	8.6 6 2.8 6 16 4 0.5 2 1.6 6
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 1004.2 718.1 486.1	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6	13 2 29 17** 17** 8	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2	8.6 6 2.8 6 16 4 0.5 2 1.6 6
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 1004.2 718.1 486.1 615.5	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1	13 2 29 17** 17** 8	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5#
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 1004.2 718.1 486.1 615.5 299.9	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1	13 2 29 17** 17** 8 7 3	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5#
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 $1004.2 718.1 486.1 615.5 299.9 555.9 $	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.**	13 2 29 17** 17** 8 7 3 3	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5#
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 1004.2 718.1 486.1 615.5 299.9 555.9 681.0	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1	13 2 29 17** 17** 8 7 3 3 12	451.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5#
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126 5	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 1004.2 718.1 486.1 615.5 299.9 555.9 681.0 689.4	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8*	13 2 29 17** 17** 8 7 3 3 12 21	451.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1	$\begin{array}{c} 8.6 & 6 \\ 2.8 & 6 \\ 16 & 4 \\ 0.5 & 2 \\ 1.6 & 6 \\ 4.1 & 5 \\ 5.2 & 5 \\ 7 & 0 & 7 \end{array}$
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 1004.2 718.1 486.1 615.5 299.9 555.9 681.0 689.4 226 6	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8&	13 2 29 17** 17** 8 7 3 3 12 21 2	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 1004.2 718.1 486.1 615.5 299.9 555.9 681.0 689.4 336.6	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4	13 2 29 17** 17** 8 7 3 3 12 21 2	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 1004.2 718.1 486.1 615.5 299.9 555.9 681.0 689.4 336.6 636.5	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4 0.9	13 2 29 17** 17** 8 7 3 3 12 21 2 3	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9 4407.9	$\begin{array}{c} 1 & 698.1 \\ 564.7 \\ 598.9 \\ 225.8 \\ 429.0 \\ 748.4 \\ 256.0 \\ 481.8 \\ 255.8 \\ 1004.2 \\ 718.1 \\ 486.1 \\ 615.5 \\ 299.9 \\ 555.9 \\ 681.0 \\ 689.4 \\ 336.6 \\ 636.5 \\ 281.7 \\ 78$	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4 0.9 1.6	13 2 29 17** 17** 8 7 3 3 12 21 2 3	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9 4407.9	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 $1004.2718.1486.1615.5299.9555.9681.0689.4336.6636.5281.7715.3$	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4 0.9 1.6	13 2 29 17** 17** 8 7 3 3 12 21 2 3 5	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9 4407.9	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 $1004.2718.1486.1615.5299.9555.9681.0689.4336.6636.5281.7715.3971.1$	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4 0.9 1.6 0.9	13 2 29 17** 17** 8 7 3 3 12 21 2 3 5 5	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9 4407.9	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 $1004.2 718.1 486.1 615.5 299.9 555.9 681.0 689.4 336.6 636.5 281.7 715.3 971.1 761.7 $	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4 0.9 1.6 0.9 3.1	13 2 29 17** 17** 8 7 3 3 12 21 2 3 5 5	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9 4407.9 4534.1 4603.8	1 698.1 564.7 598.9 225.8 429.0 748.4 256.0 481.8 255.8 $1004.2 718.1 486.1 615.5 299.9 555.9 681.0 689.4 336.6 636.5 281.7 715.3 971.1 761.7 375.7 $	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4 0.9 1.6 0.9 3.1 0.6	13 2 29 17** 17** 8 7 3 3 12 21 2 3 5 5 5 3	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9 4407.9 4534.1 4603.8	1 698.1 564.7 598.9 225.8 429.0 748.4 255.8 $1004.2718.1486.1615.5299.9555.9681.0689.4336.6636.5281.7715.3971.1761.7375.7712.2$	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4 0.9 1.6 0.9 3.1 0.6 1.0	13 2 29 17** 17** 8 7 3 3 12 21 2 3 5 5 5 3	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9 4407.9 4407.9 4534.1 4603.8 4761.6	$1 698.1 \\ 564.7 \\ 598.9 \\ 225.8 \\ 429.0 \\ 748.4 \\ 256.0 \\ 481.8 \\ 255.8 \\ 1004.2 \\ 718.1 \\ 486.1 \\ 615.5 \\ 299.9 \\ 555.9 \\ 681.0 \\ 689.4 \\ 336.6 \\ 636.5 \\ 281.7 \\ 715.3 \\ 971.1 \\ 761.7 \\ 375.7 \\ 712.2 \\ 793.4 \\ \end{cases}$	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4 0.9 1.6 0.9 3.1 0.6 1.0 2.0	13 2 29 17** 17** 8 7 3 3 12 21 2 3 5 5 5 3 11	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9 4407.9 4534.1 4603.8 4761.6 4893.1	$\begin{array}{c} 1 & 698.1 \\ 564.7 \\ 598.9 \\ 225.8 \\ 429.0 \\ 748.4 \\ 256.0 \\ 481.8 \\ 255.8 \\ 1004.2 \\ 718.1 \\ 486.1 \\ 615.5 \\ 299.9 \\ 555.9 \\ 681.0 \\ 689.4 \\ 336.6 \\ 636.5 \\ 281.7 \\ 715.3 \\ 971.1 \\ 761.7 \\ 375.7 \\ 712.2 \\ 793.4 \\ 766.6 \end{array}$	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4 0.9 1.6 0.9 3.1 0.6 1.0 2.0 3.1	13 2 29 17** 17** 8 7 3 3 12 21 2 3 5 5 5 3 11 11	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1 793.6 2 767.6 5	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9 4407.9 4407.9 4534.1 4603.8 4761.6 4893.1 5009.6	$\begin{array}{c} 1 & 698.1 \\ 564.7 \\ 598.9 \\ 225.8 \\ 429.0 \\ 748.4 \\ 256.0 \\ 481.8 \\ 255.8 \\ 1004.2 \\ 718.1 \\ 486.1 \\ 615.5 \\ 299.9 \\ 555.9 \\ 681.0 \\ 689.4 \\ 336.6 \\ 636.5 \\ 281.7 \\ 715.3 \\ 971.1 \\ 761.7 \\ 375.7 \\ 712.2 \\ 793.4 \\ 766.6 \\ 405.6 \end{array}$	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4 0.9 1.6 0.9 3.1 0.6 1.0 2.0 3.1	13 2 29 17** 17** 8 7 3 12 21 2 3 5 5 5 3 11 11	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1 793.6 2 767.6 5	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7 3.0 4 2.4 4
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9 4407.9 4534.1 4603.8 4761.6 4893.1 5009.6	$\begin{array}{c} 1 & 698.1 \\ 564.7 \\ 598.9 \\ 225.8 \\ 429.0 \\ 748.4 \\ 256.0 \\ 481.8 \\ 255.8 \\ 1004.2 \\ 718.1 \\ 486.1 \\ 615.5 \\ 299.9 \\ 555.9 \\ 681.0 \\ 689.4 \\ 336.6 \\ 636.5 \\ 281.7 \\ 715.3 \\ 971.1 \\ 761.7 \\ 375.7 \\ 712.2 \\ 793.4 \\ 766.6 \\ 405.6 \\ 781.2 \end{array}$	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4 0.9 1.6 0.9 3.1 0.6 1.0 2.0 3.1	13 2 29 17** 17** 8 7 3 12 21 2 3 5 5 5 3 11 11 11 7**	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 681.3 1 689.8 1 793.6 2 767.6 5 781.8 2	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7 3.0 4 2.4 4 3.3 9**
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9 4407.9 4407.9 4534.1 4603.8 4761.6 4893.1 5009.6 5216.4	$\begin{array}{c} 1 & 698.1 \\ 564.7 \\ 598.9 \\ 225.8 \\ 429.0 \\ 748.4 \\ 256.0 \\ 481.8 \\ 255.8 \\ 1004.2 \\ 718.1 \\ 486.1 \\ 615.5 \\ 299.9 \\ 555.9 \\ 681.0 \\ 689.4 \\ 336.6 \\ 636.5 \\ 281.7 \\ 715.3 \\ 971.1 \\ 761.7 \\ 375.7 \\ 712.2 \\ 793.4 \\ 766.6 \\ 405.6 \\ 781.2 \\ 808.5 \\ \end{array}$	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4 0.9 3.1 0.6 1.0 2.0 3.1 0.3	13 2 29 17** 17** 8 7 3 12 21 2 3 5 5 5 3 11 11 11 7** 5	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1 793.6 2 767.6 5 781.8 2	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7 3.0 4 2.4 4 3.3 9**
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9 4407.9 4534.1 4603.8 4761.6 4893.1 5009.6 5216.4 5392.3	$\begin{array}{c} 1 & 698.1 \\ 564.7 \\ 598.9 \\ 225.8 \\ 429.0 \\ 748.4 \\ 256.0 \\ 481.8 \\ 255.8 \\ 1004.2 \\ 718.1 \\ 486.1 \\ 615.5 \\ 299.9 \\ 555.9 \\ 681.0 \\ 689.4 \\ 336.6 \\ 636.5 \\ 281.7 \\ 715.3 \\ 971.1 \\ 761.7 \\ 375.7 \\ 712.2 \\ 793.4 \\ 766.6 \\ 405.6 \\ 781.2 \\ 808.5 \\ 858.1 \end{array}$	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4 0.9 3.1 0.6 1.0 2.0 3.1 0.3 0.4	13 2 29 17** 17** 8 7 3 12 21 2 3 5 5 5 3 11 11 11 7** 5 15&	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1 793.6 2 767.6 5 781.8 2	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7 3.0 4 2.4 4 3.3 9**
3177. 3286.7 3335.5 3436.8 3591.5 3692.3 3694.0 3772.4 3891.4 3968.0 4126.5 4227.9 4407.9 4534.1 4603.8 4761.6 4893.1 5009.6 5216.4 5392.3 5445.9	$\begin{array}{c} 1 & 698.1 \\ 564.7 \\ 598.9 \\ 225.8 \\ 429.0 \\ 748.4 \\ 256.0 \\ 481.8 \\ 255.8 \\ 1004.2 \\ 718.1 \\ 486.1 \\ 615.5 \\ 299.9 \\ 555.9 \\ 681.0 \\ 689.4 \\ 336.6 \\ 636.5 \\ 281.7 \\ 715.3 \\ 971.1 \\ 761.7 \\ 375.7 \\ 712.2 \\ 793.4 \\ 766.6 \\ 405.6 \\ 781.2 \\ 808.5 \\ 858.1 \\ 842.0 \end{array}$	2.0 8.0 3.6 0.6 1.4 10.9 2.7 3.6 0.5 1.6 1.9& 0.6 4.1 1.1 2.2** 4.1 7.8& 0.4 0.9 1.6 0.9 3.1 0.6 1.0 2.0 3.1 0.3 0.4 1.4	13 2 29 17** 17** 8 7 3 3 12 21 2 3 5 5 5 3 11 11 11 7** 5 15&	431.7 1 565.3 1 599.5 1 748.8 2 1003.8 3 717.8 2 615.8 1 681.3 1 689.8 1 793.6 2 767.6 5 781.8 2	8.6 6 2.8 6 16 4 0.5 2 1.6 6 4.1 5# 5.2 5 7.0 7 3.0 4 2.4 4 3.3 9**

¹²⁴₅₆Ba₆₈-4

5725.6 5763.8 5905.8 6081.0	877.1 832.5 870.7 896.1 864.6	0.9 0.4 0.2		2 20					
Eγ val n: Tran & Compo ** Comp # Autho have	ues are sition osite li osite l rs' valu modifie	given fo energy wa ne. ine multi με Ιγ=41 d it to 4	r ⁹⁴ Zr(³ s given ply pla 5 se .1 5.	4 S,4n γ), but no ced, int eems to	o inten ensity be a mi	and ¹¹¹ C sity was not div isprint,	d(¹⁶ 0,3nγ). give by author ided. the evaluators	····	
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. <mark>&</mark>	$\delta^{\&}$	α ^{<i>a</i>}	Comments
^x 188.7 [#] 3									Mixed with γ rays in ¹²⁴ Cs, ¹²⁵ Cs
191 <mark>b</mark>		1912.76	5-	1721.7	(3 ⁻)				from 2005Mb05. Intensity is not
193.2 <i>1</i>	4.0	2690.7		2497.5	(6 ⁻)	D(+Q)	+0.01 25		given. $A_2=-0.30$ 7 in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49); $A_2=-0.390$ 4, $A_4=+0.002$ 5 in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19); DCO=0.53 4, $A_2=+0.19$ 3 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
203.2 4	0.4	3109.7	(9 ⁻)	2906.4	(8 ⁻)				I _{γ} : from I(203.2 γ)/I(462.3 γ)=0.3/ 2.5 in ¹¹⁰ Cd(¹⁶ O,2n γ)
215.7 1	3.9	2906.4	(8 ⁻)	2690.7	(0-)	D(+Q)	-0.21 +25-15		(1990Pi11). $A_2=-0.35 \ I9 \text{ in } {}^{110}\text{Cd}({}^{18}\text{O},4n\gamma)$ (1988Ma49); $A_2=-0.639 \ 3$, $A_4=+0.072 \ 4 \text{ in } {}^{110}\text{Cd}({}^{16}\text{O},3n\gamma)$ (1989Ko19); DCO=0.45 4, $A_2=+0.25 \ 2 \text{ in } {}^{110}\text{Cd}({}^{16}\text{O},2n\gamma)$ (1990Pi11).
225.8 <i>4</i> 229.9 <i>1</i> 230.7 <i>4</i>	2.7 100.0 3.4	2497.5	(10^{-}) 2^{+} (6^{-})	2267.01	(9 ⁻) 0 ⁺ 5 ⁻	E2		0.108	B(E2)(W.u.)=113 5 Mult.: from γ(θ) and linear polarization (1988Ma49): A_2 =+0.26 4, A_4 =-0.35 10, pol=0.46 9 in ⁹⁶ Zr(³⁴ S,6nγ), A_2 =+0.41 3 in ¹¹⁰ Cd(¹⁸ O,4nγ) (1988Ma49); A_2 =+0.2533 23, A_4 =-0.038 4 in ¹¹⁰ Cd(¹⁶ O,3nγ) (1989Ko19); DCO=1.06 2, A_2 =-0.22 2 in ¹¹⁰ Cd(¹⁶ O,2nγ) (1990Pi11). I _γ : composite line. Other components were not given by
									authors. DCO=0.46 8 in ¹¹⁰ Cd(¹⁶ O,2nγ) (1990Pi11).
255.8 4		3692.3	(12 ⁺)	3436.8	(12 ⁺)	D+Q			DCO=1.0 4 in 110 Cd(16 O,2n γ) (1990Pi11).
256.0 4	4.2	3591.5	(11 ⁻)	3335.5	(10 ⁻)				 I_γ: composite line. Other components were not given by authors. A₂=+0.42 3 for a complex line in

¹²⁴₅₆Ba₆₈-5

(HI,xnγ) 1990Pi11,1989Ko19,1988Ma49 (continued)

$\gamma(^{124}\text{Ba})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$\delta^{\&}$	α ^{<i>a</i>}	Comments
201 7 4		4407.0	(14+)	4126.5	(1.4+)				¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49) DCO=1.09 8, A ₂ =-0.08 3 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
281.74 288.14	0.4	4407.9 2647.42	(14 ⁺) (7 ⁻)	4126.5 2359.37	(14^{+}) (6) ⁻	D(+Q)	-0.13 +12-15		I _{γ} : from I(288.1 γ)/I(385.7 γ)=0.6/2.0 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11). DCO=0.35 <i>12</i> , A ₂ =+0.34 5 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
299.9 <i>4</i>	2.9	3891.4	(12 ⁻)	3591.5	(11 ⁻)	D+Q			$A_{2}=-0.20 \ 7 \ in \ {}^{110}Cd({}^{18}O,4n\gamma) \\ (1988Ma49); \ DCO=0.62 \ 9 \ in \\ {}^{110}Cd({}^{16}O,2n\gamma) \ (1990Pi11).$
312 [@] 1		2033.55	(4 ⁻)	1721.7	(3 ⁻)				observed In coincidence with 345 keV and 326 keV G. Intensity is not given. Uncertainty of energy is given by evaluator.
325.8 1	1.5	2359.37	(6)-	2033.55	(4 ⁻)	Q			A ₂ =+0.38 7, A ₄ =-0.16 <i>10</i> in ¹¹⁰ Cd(¹⁶ O,3n\gamma) (1989Ko19); DCO=1.22 <i>14</i> in ¹¹⁰ Cd(¹⁶ O,2n\gamma) (1990Pi11).
336.6 4	2.3	4227.9	(13 ⁻)	3891.4	(12 ⁻)	D+Q			DCO=0.61 18 in 110 Cd(16 O,2n γ)
338.4 4	0.2	2261.72	(7) ⁻	1923.32	8+				I_{γ} : from I(338.4 γ)/I(1033.2 γ)=0.2/
345.4 <i>1</i>	6.2	2704.85	(8)-	2359.37	(6)-	Q			$A_2=+0.53 \ I3 \text{ in }^{110}\text{Cd}(^{18}\text{O},4n\gamma)$ (1988Ma49); $A_2=+0.28 \ 3$, $A_4=-0.09 \ 4 \text{ in }^{110}\text{Cd}(^{16}\text{O},3n\gamma)$ (1989Ko19); DCO=1.07 4, $A_2=-0.22 \ 3 \text{ in }^{110}\text{Cd}(^{16}\text{O},2n\gamma)$ (1990Pi11)
349.0 <i>3</i>	0.5	2261.72	$(7)^{-}$	1912.76	5^{-}				$L : \text{from } I(354 \text{ O}_2)/I(042 \text{ J}_2) = 0.7/1.6$
554.0 4	1	2207.01	5	1912.70	5	ΨŦŲ			in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11). A ₂ =+0.23 5 in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49); DCO=1.10 18 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
375.6 4	1.3	4603.8	(14 ⁻)	4227.9	(13 ⁻)	D+Q			$A_{2}=-0.21 \ I2 \ in \ {}^{110}Cd({}^{18}O,4n\gamma)$ (1988Ma49); DCO=0.69 20 in ${}^{110}Cd({}^{16}O,2n\gamma) \ (1990Pi11).$
380.3 4	0.6	2647.42	(7 ⁻)	2267.01	5-	Q			DCO=1.12 <i>14</i> in 110 Cd(16 O,2n γ)
385.7 4	1.8	2647.42	(7-)	2261.72	(7)-	D+Q			$DCO=0.98 \ 11, A_2=-0.20 \ 2 \text{ in}$ $110Cd(^{16}O \ 2ma) (1000Pi11)$
405.1 4	1.6	3109.7	(9 ⁻)	2704.85	(8)-	D+Q			DCO= $0.43 \ 6 \ in \ ^{110}Cd(^{16}O,2n\gamma)$ (1990Pi11).
405.6 <i>4</i> 408.7 <i>4</i>	0.3	5009.7 2906.4	(15 ⁻) (8 ⁻)	4603.8 2497.5	(14 ⁻) (6 ⁻)	Q			$A_2 = +0.21 \ I8 \text{ in } {}^{110}\text{Cd}({}^{18}\text{O},4n\gamma)$ (1988Ma49); DCO=1.18 23 in ${}^{110}\text{Cd}({}^{16}\text{O},2n\gamma)$ (1990Pi11)
421.5 <i>l</i>	100.0	651.67	4+	229.91	2+	E2		0.0160	Mult.: from $\gamma(\theta)$ and linear polarization (1988Ma49): A ₂ =+0.30 5, A ₄ =-0.15 5, pol=0.47 9 in ⁹⁶ Zr(³⁴ S,6ny), A ₂ =+0.31 2 in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49); A ₂ =+0.321 3, A ₄ =-0.050 4 in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19); DCO=1.03 2, A ₂ =-0.24 2 in

				(HI,xn	γ) 1	990Pi11,1989	Ko19,1988M	a49 (continued	<u>)</u>
						$\gamma(^{124}\text{Ba})$	(continued)		
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. ^{&}	δ ^{&}	α^{a}	Comments
									¹¹⁰ Cd(¹⁶ O,2nγ) (1990Pi11).

γ ⁽¹²⁴Ba) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.&	$\delta^{\&}$	Comments
429.0 4	2.4	3335.5	(10 ⁻)	2906.4	(8-)	Q		DCO=1.13 <i>17</i> , A ₂ = $-0.15 4$ in ¹¹⁰ Cd(¹⁶ O,2n γ)
435.3 <i>4</i> 436 4 <i>4</i>	0.9	3156.60 5445 9	(10^{-}) (16^{-})	2721.52 5009 7	$(9)^{-}$ (15^{-})	D+Q		DCO=0.49 <i>15</i> in 110 Cd(16 O,2n γ) (1990Pi11).
442.9 <i>4</i>	0.9	2704.85	(8) ⁻	2261.72	$(7)^{-1}$			Iγ=0.9 for 442.9γ+444.4γ doublet (1990Pi11). DCO=0.94 8 for 442.9γ+444.4γ in 110 Cd(16 O,2nγ) (1990Pi11)
444.4 <i>4</i>	0.9	1672.25	(5 ⁺)	1228.40	6+			$I\gamma=0.9$ for 442.9 γ +444.4 γ doublet (1990Pi11).
446.5 2	1.6	2359.37	(6) ⁻	1912.76	5-	D(+Q)	-0.3 +3-5	$A_{2}=-0.5 \ 3 \ \text{in}^{110}\text{Cd}(^{18}\text{O},4n\gamma) \ (1988\text{Ma49});$ $A_{2}=-0.50 \ 4, \ A_{4}=+0.08 \ 6 \ \text{in}^{110}\text{Cd}(^{16}\text{O},3n\gamma)$ $(1989\text{Ko19}); \ \text{DCO}=0.31 \ 4, \ A_{2}=+0.52 \ 5 \ \text{in}$ $^{110}\text{Cd}(^{16}\text{O},2n\gamma) \ (1990\text{Pi11}).$
451.6 2	3.7	3156.60	(10 ⁻)	2704.85	(8) ⁻			I γ =3.7 for 451.4 γ +452.0 γ doublet (1990Pi11). DCO=1.25 <i>19</i> and A ₂ =-0.19 <i>2</i> for 451.4 γ +452.0 γ in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11) A ₂ =+0.39 <i>9</i> in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49) A ₂ =+0.333 <i>10</i> , A ₄ =-0.025 <i>16</i> in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19).
451.7 <i>1</i>	3.7	1324.77	4+	873.20	2+			$I\gamma$ =3.7 for 451.4 γ +452.0 γ doublet (1990Pi11). A ₂ =0.36 <i>3</i> for a complex peak in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49).
459.8 <i>1</i>	8.0	2721.52	(9)-	2261.72	(7)-	Q		A ₂ =+0.39 8 in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49); A ₂ =+0.325 <i>18</i> , A ₄ =0.00 <i>3</i> in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19); DCO=0.96 <i>6</i> , A ₂ =-0.21 <i>3</i> in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
462.3 4	3.7	3109.7	(9 ⁻)	2647.42	(7 ⁻)	Q		DCO=1.04 <i>16</i> , A ₂ = -0.18 5 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
481.8 4	4.0	3591.5	(11 ⁻)	3109.7	(9 ⁻)	Q		DCO=1.26 24, A ₂ = -0.10 5 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
486.1 <i>4</i>	1.1	3772.4	(12 ⁻)	3286.69	(11)-			I _{γ} : from I(486.1 γ)/I(615.5 γ)=0.6/4.1 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
510.0 <i>1</i>	1.1	1162.04	(3 ⁺)	651.67	4+			I _γ =1.1 for 509.9γ+510.9γ doublet (1990Pi11). A ₂ =+0.15 3, A ₄ =+0.02 4 in ¹¹⁰ Cd(¹⁶ O,3nγ) (1989Ko19) DCO=1.12 14 and A ₂ =-0.07 4 for 509.9γ+510.9γ in ¹¹⁰ Cd(¹⁶ O,2nγ) (1990Pi11).
510.0 <i>I</i>	1.1	1672.25	(5 ⁺)	1162.04	(3 ⁺)			$I\gamma = 1.1$ for 509.9 $\gamma + 510.9\gamma$ doublet (1990Pi11).
533.4 1	1.9	1858.14	(6)+	1324.77	4+	Q		A ₂ =+0.35 <i>15</i> in ¹¹⁰ Cd(¹⁶ O,4n γ) (1988Ma49); A ₂ =+0.15 <i>3</i> , A ₄ =-0.08 <i>5</i> in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19); DCO=1.12 <i>16</i> in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11)
555.7 4	4.6	2479.04	(8 ⁺)	1923.32	8+			$I\gamma$ =4.6 for 555.7 γ +555.9 γ doublet (1990Pi11). DCO=1.07 20 for 555.7 γ +555.9 γ in $^{110}Cd(^{16}O, 2\pi\gamma)$ (1000Pi11)
555.9 4	4.6	3891.4	(12 ⁻)	3335.5	(10 ⁻)			$I\gamma=4.6$ for 555.7 $\gamma+555.9\gamma$ doublet (1990Pi11).
565.2 1	16.5	3286.69	(11)-	2721.52	(9)-	E2		Mult.: from $\gamma(\theta)$ and linear polarization (1988Ma49): A ₂ =+0.18 6, A ₄ =-0.02 8, pol=0.50 19 in ⁹⁶ Zr(³⁴ S,6n γ), A ₂ =+0.26 4 in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49); A ₂ =+0.288 15, A ₄ =-0.064 22 in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19); DCO=0.96 6,
576.9 1	86.1	1228.40	6+	651.67	4+	E2		A ₂ =-0.13 2 in ¹¹⁰ Cd(¹⁰ O,2n γ) (1990Pi11). Mult.: from $\gamma(\theta)$ and linear polarization (1988Ma49): A ₂ =+0.23 2 in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49); A ₂ =+0.314 3, A ₄ =-0.071 4 in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19); DCO=0.92 4, A ₂ =-0.07 4 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).

γ ⁽¹²⁴Ba) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.&	δ&	Comments
^x 594 [#] 1 598.5 1	3.1	3286.69	(11)-	2688.17	(10+)	D		A ₂ =-0.15 <i>19</i> in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49); A ₂ =+0.30 4, A ₄ =+0.09 6 in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19); DCO=0.89 22 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1900B11)
612.7 2	3.1	2285.32	(7+)	1672.25	(5 ⁺)	Q		$A_2=+0.81 \ 8, \ A_4=-0.09 \ 11 \ in \ ^{110}Cd(^{16}O,3n\gamma)$ (1989Ko19); DCO=1.10 \ 14, \ A_2=-0.20 \ 3 \ in \ ^{110}Cd(^{16}O,2n\gamma) (1990Pi11)
615.5 4	7.4	3772.4	(12 ⁻)	3156.60	(10 ⁻)	Q		$A_2 = -0.07 \ 3 \ in \ {}^{110}Cd({}^{18}O,4n\gamma) \ (1988Ma49);$ DCO=1.07 14 in ${}^{110}Cd({}^{16}O,2n\gamma) \ (1990Pi11).$
620.9 <i>1</i> 629.7 <i>1</i>	1.9 2.0	2479.04 1858.14	(8 ⁺) (6) ⁺	1858.14 1228.40	(6) ⁺ 6 ⁺	Q D+Q		DCO=1.07 <i>13</i> in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11). I _{γ} : from I(534.4 γ)/I(629.7 γ)=3.0 2/3.2 6 in ¹¹¹ Cd(¹⁶ O,3n γ) (1989Ko19); other: I γ =0.4 from I(533.2 γ)/I(629.6 γ)=3.0/0.6 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11). A ₂ =-0.4 4 in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49); A ₂ =-0.02 4, A ₄ =+0.09 5 in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19); DCO=0.89 <i>12</i> in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11)
636.5 4	3.5	4227.9	(13 ⁻)	3591.5	(11 ⁻)	Q		$DCO=1.12$ <i>19</i> in ¹¹⁰ Cd(¹⁶ O,2n\gamma) (1990Pi11).
64 <i>3</i> .4 <i>1</i>	1.4	873.20	21	229.91	21	D+Q		$A_2=0.005, A_4=-0.138$ in $HSCd(180, 3n\gamma)$ (1989K019); DCD=0.95 13 in
673.1 <i>1</i>	2.3	1324.77	4+	651.67	4+	D(+Q)	-0.15 +25-20	$A_{2}=+0.11 \ 2 \ \text{in} \ {}^{110}\text{Cd}({}^{16}\text{O},2n\gamma) \ (1990\text{P111}).$ $A_{2}=+0.11 \ 2 \ \text{in} \ {}^{110}\text{Cd}({}^{18}\text{O},4n\gamma) \ (1988\text{Ma49})$ $A_{2}=+0.15 \ 3, \ A_{4}=-0.11 \ 4 \ \text{in} \ {}^{110}\text{Cd}({}^{16}\text{O},3n\gamma) \ (1989\text{Ko19}); \ \text{DCO}=0.87 \ 9, \ A_{2}=-0.20 \ 2 \ \text{in} \ {}^{110}\text{Cd}({}^{16}\text{O},2n\gamma) \ (1900\text{P111})$
681.3 <i>1</i>	17.4	3967.99	(13)-	3286.69	(11) ⁻	E2		Mult.: from $\gamma(\theta)$ and linear polarization (1988Ma49): pol=+0.52 <i>I8</i> in ⁹⁶ Zr(³⁴ S,6n γ), A ₂ =+0.28 <i>8</i> in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49); A ₂ =+0.194 <i>25</i> , A ₄ =-0.11 <i>4</i> in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19); DCO=0.91 <i>I3</i> , A ₂ =-0.20 <i>2</i> in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11)
684.6 <i>4</i>	0.6	1912.76	5-	1228.40	6+	D		$A_2 = -0.08 \ 6 \ in \ {}^{110}Cd({}^{18}O,4n\gamma) \ (1988Ma49);$ DCO=0.89 <i>18</i> in \ {}^{110}Cd({}^{16}O,2n\gamma) \ (1990Pi11).
689.8 <i>1</i>	21.4	2975.19	(9^+)	2285.32	(7^+)	EQ		
689.8 2	31.4	4126.5	(14 ⁺)	3436.8	(12 ⁺)	Ε2		$I_γ$: composite line. Other components were not given by authors. Mult.: from γ(θ), γγ(θ), DCO and linear polarization (1988Ma49). A ₂ =+0.32 4, A ₄ =-0.30 5, pol=+0.58 18 in ⁹⁶ Zr(³⁴ S,6nγ), A ₂ =+0.27 3 in ¹¹⁰ Cd(¹⁸ O,4nγ) (1988Ma49); A ₂ =+0.42 3, A ₄ =-0.05 4 in ¹¹⁰ Cd(¹⁶ O,3nγ) (1989Ko19); DCO=1.08 9, A ₂ =-0.26 2 in ¹¹⁰ Cd(¹⁶ O,2nγ) (1990Pi11).
695.1 <i>1</i>	67.6	1923.32	8+	1228.40	6+	Q		A ₂ =0.28 2 in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49); A ₂ =+0.280 6, A ₄ =-0.064 9 in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19); DCO=0.95 8, A ₂ =-0.25 2 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
698.1 <i>4</i> 712.2 <i>4</i>	2.6	3177.1 4603.8	(10 ⁺) (14 ⁻)	2479.04 3891.4	(8 ⁺) (12 ⁻)	Q		$DCO=1.05 \ 12 \text{ in } {}^{110}Cd({}^{16}O,2n\gamma) \ (1990Pi11).$

$\gamma(^{124}\text{Ba})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.&	Comments
715.3 4	4.3	4407.9	(14^{+})	3692.3	(12^{+})	Q	DCO=1.15 21 in 110 Cd(16 O,2n γ) (1990Pi11).
718.8 2		3694.0	(11^{+})	2975.19	(9 ⁺)		DCO=1.19 22 in 110 Cd(16 O,2n γ) (1990Pi11).
748.8 2	35.4	3436.8	(12^+)	2688.17	(10^{+})	0	$A_2 = +0.34 \ 3 \text{ in } {}^{110}\text{Cd}({}^{18}\text{O},4n\gamma) (1988\text{Ma49}); A_2 = +0.271 \ 14,$
							$A_4 = -0.070 \ 21 \text{ in } {}^{110}\text{Cd}({}^{16}\text{O},3n\gamma) \ (1989\text{Ko19}); \ \text{DCO} = 0.91$
							6, $A_2 = -0.30 \ 3 \ \text{in}^{110} \text{Cd}({}^{16}\text{O},2n\gamma) \ (1990\text{Pi}11).$
761.7 4	3.0	4534.1	(14^{-})	3772.4	(12^{-})	0	DCO=0.68 12, $A_2 = -0.32$ 3 in ¹¹⁰ Cd(¹⁶ O,2ny) (1990Pi11).
764.6 4	55.1	2688.17	(10^{+})	1923.32	8+	ò	$A_2 = +0.33 \ 3 \ in \ {}^{110}Cd({}^{18}O,4n\gamma) \ (1988Ma49); A_2 = +0.295 \ 10,$
							$A_4 = -0.108 \ 15 \text{ in } {}^{110}\text{Cd}({}^{16}\text{O},3n\gamma) \ (1989\text{Ko19}); \ \text{DCO} = 0.95$
							5, $A_2 = -0.29$ 2 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
766.6 4	21.1	4893.1	(16^{+})	4126.5	(14^{+})	0	$A_2 = +0.15 \ 3 \ in \ {}^{110}Cd({}^{18}O, 4n\gamma) \ (1988Ma49); \ DCO = 0.95 \ 18,$
							$A_2 = -0.26 \ 3 \ \text{in}^{110} \text{Cd}(^{16}\text{O}, 2n\gamma) \ (1990\text{Pi}11).$
781.8 2	5.7	2704.85	$(8)^{-}$	1923.32	8+		$I\gamma = 5.7$ for $781.2\gamma + 781.3\gamma$ doublet (1990Pi11).
							$A_2 = +0.22 \ 3, A_4 = -0.10 \ 5 \ in \ {}^{110}Cd({}^{16}O, 3n\gamma) \ (1989Ko19);$
							DCO=0.89 15 for 781.2 γ +781.3 in ¹¹⁰ Cd(¹⁶ O,2n γ)
							(1990Pi11).
781.8 2	5.7	5009.7	(15 ⁻)	4227.9	(13-)		$I\gamma = 5.7$ for $781.2\gamma + 781.3\gamma$ doublet (1990Pi11).
							$A_2 = +0.15 6 \text{ in } {}^{110}\text{Cd}({}^{18}\text{O},4n\gamma) (1988\text{Ma49}).$
789.3 4	0.8	2647.42	(7^{-})	1858.14	$(6)^{+}$	D	I_{γ} : from I(385.7 γ)/I(789.3 γ)=2.0/0.9 in ¹¹⁰ Cd(¹⁶ O,2n γ)
							(1990Pi11).
							DCO=0.55 <i>16</i> in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
793.6 2	13.5	4761.6	(15 ⁻)	3967.99	$(13)^{-}$	Q	$A_2 = +0.25 6 \text{ in } {}^{110}\text{Cd}({}^{18}\text{O},4n\gamma) (1988\text{Ma49}); A_2 = +0.22 3,$
							$A_4 = +0.085$ in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19); DCO=0.82
					- 1		17, $A_2 = -0.36$ 7 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
798.4 2	11.9	2721.52	(9)-	1923.32	8+	E1	Mult.: from $\gamma(\theta)$ and linear polarization (1988Ma49).
							Pol=+0.36 15 in ${}^{90}\text{Zr}({}^{34}\text{S},6n\gamma)$, A ₂ =-0.35 7 in
							110 Cd(10 O,4n γ) (1988Ma49); A ₂ =-0.203 14, A ₄ =+0.037
							$21 \text{ in } 10^{\circ} \text{Cd}(^{10}\text{O},3n\gamma)$ (1989Ko19); DCO=0.58 5,
000 5 4	5.0	5016 4	(1(+))	4407.0	(1.4+)		$A_2 = +0.28 \ 4 \ in \ ^{110}Cd(^{10}O, 2n\gamma) \ (1990P111).$
808.5 4	5.0	5216.4	(10^{-1})	4407.9	(14^{+})		$1 - \frac{1}{2} + $
824.9 4	0.2	2497.5	(0)	1072.25	(5^{-})		I_{γ} : IFOM I(250.7 γ)/I(824.9 γ)=5.0/0.5 In ²²² Cd(²² O,2n γ) (1000B;11)
837 5 1	5.0	5725 6		1803 1	(16^{+})	$(\mathbf{D} \mid \mathbf{O})$	(19901111). DCO-0.35 13 in 110 Cd $(16O.2not)$ (1000Pi11)
842.0.4	33	5445.9	(16^{-})	4603.8	(10^{-})	(D+Q)	DCO=0.55 15 m $Cd(-0.207)$ (1990) 111).
x847.0 [#] 3	0.0	5115.5	(10)	100510	(11)		
858 1 1	58	5302.2	(16^{-})	4534-1	(14^{-})	0	$A_{2} = \pm 0.16.3$ in $\frac{110}{10}$ Cd($\frac{18}{10}$ (1988 Ma(9)); DCO=1.09.13
050.1 4	5.0	5592.2	(10)	4334.1	(14)	Q	$A_2 = +0.103 \text{ m}$ Cu(0,417) (1988)(449), DCO=1.0913 in $0.47r(^{34}\text{S}/\text{mv})$ (1990)[11]
864.6.4	4.1	6081.0	(18^{+})	5216.4	(16^{+})		
870.7 4	13.1	5763.8	(18^+)	4893.1	(16^+)	0	$DCO=1.10$ 15 in $94Zr(^{34}S.4n\gamma)$ (1990Pi11).
873.3.3	0.6	873.20	2+	0.0	0^+	×	L.: from $I(643.4\gamma)/I(873.3\gamma) = 1.6.5/0.7.3 in {}^{111}Cd({}^{16}O.3n\gamma)$
			_		÷		(1989Ko19); other: $I\gamma=0.4$ from
							$I(642.7\gamma)/I(872.5\gamma)=2.3/0.6$ in ¹¹⁰ Cd(¹⁶ O,2n γ)
							(1990Pi11).
							$A_2 = +0.065$, $A_4 = -0.047$ in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19).
877.1 4	7.7	5638.7	(17-)	4761.6	(15 ⁻)		$A_2 = +0.2 \ 3 \ in \ {}^{110}Cd({}^{18}O,4n\gamma) \ (1988Ma49).$
896.1 4	4.4	5905.8	(17^{-})	5009.7	(15 ⁻)		$I\gamma = 4.4$ for 896.1 γ +898.0 γ doublet (1990Pi11).
898.0 4	4.4	6290.3	(18 ⁻)	5392.2	(16 ⁻)		Iγ=4.4 for 896.1γ+898.0γ doublet (1990Pi11).
917.1 4	7.5	6555.8	(19 ⁻)	5638.7	(17 ⁻)		
919.0 4	<1	7000.0	(20 ⁺)	6081.0	(18 ⁺)		110 18
932.8 2	4.4	1162.04	(3+)	229.91	2+		$A_2 = +0.17 \ 20 \text{ in}^{110} \text{Cd}({}^{16}\text{O},4n\gamma) \ (1988\text{Ma49}) \ \text{DCO} = 0.78 \ 17$
007.0 ((202.0	(10-)	5445 0	(1 < -)		\ln^{110} Cd(10 O,2n γ) (1990Pi11).
957.04	<1	6382.9	(18)	5445.9	(10)		
737.34 01717	1.5	1229.0	(20) 5-	1204 77	(10) 4 ⁺	D	$A_{r} = 10.26 II \text{ in } \frac{110}{10} Cd(^{18}O(4rc)) (1000Mc(40)); A_{r} = 0.10.7$
742.4 Z	2.2	2207.01	5	1324.77	4	D	$A_2 = \pm 0.20$ 11 III Cu(0,4IIY) (1900IVIA49); $A_2 = -0.10$ /,

$\gamma(^{124}\text{Ba})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. <mark>&</mark>	Comments
							$A_4 = -0.11 \ 11 \text{ in } {}^{110}\text{Cd}({}^{16}\text{O},3n\gamma) \ (1989\text{Ko19}); \ \text{DCO} = 0.83 \ 17 \text{ in } {}^{110}\text{Cd}({}^{16}\text{O},2n\gamma) \ (1990\text{Pi11}).$
946.6 <i>4</i>	5.8	7502.4	(21 ⁻)	6555.8	(19 ⁻)		
947.9 <i>3</i>	6.3	6711.8	(20^{+})	5763.8	(18^{+})	Q	DCO=0.95 <i>13</i> in 94 Zr(34 S,4n γ) (1990Pi11).
965.0 4	<1	6870.8	(19 ⁻)	5905.8	(17 ⁻)		110 10
971.1 4	4.7	4407.9	(14 ⁺)	3436.8	(12 ⁺)	Q	A ₂ =+0.30 <i>15</i> in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49); DCO=0.90 23 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
983.0 <i>4</i> 984.0 <i>4</i>	<1 <1	7365.9 7984.0	(20^{-}) (22^{+})	6382.9 7000.0	(18^{-}) (20^{+})		Iγ<1 for 983.0γ+984.0γ (1990Pi11). Iγ<1 for 983.0γ+984.0γ (1990Pi11).
996.0 ⁶ 4	<1	7866.8?	(21^{-})	6870.8	(19 ⁻)		Not observed in 64 Ni(64 Ni,4n γ).
1003.8 <i>3</i>		3692.3	(12 ⁺)	2688.17	(10 ⁺)	Q	A ₂ =+0.20 <i>15</i> in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49); DCO=0.98 <i>13</i> in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
1005.3 <i>4</i> 1009.8 <i>4</i>	5.0 3.0	7717.1 8512.2	(22 ⁺) (23 ⁻)	6711.8 7502.4	(20 ⁺) (21 ⁻)	Q	DCO=0.89 <i>12</i> in 94 Zr(34 S,4n γ) (1990Pi11).
1020.8 2	3	1672.25	(5 ⁺)	651.67	4+	(D+Q)	I _{γ} : from I(444.4 γ)/I(1020.8 γ)=1.1/3.7 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
							A ₂ =+0.54 6, A ₄ =+0.19 9 in 110 Cd(16 O,3n γ) (1989Ko19); DCO=0.96 15 in 110 Cd(16 O,2n γ) (1990Pi11).
1033.3 1	13.2	2261.72	(7)-	1228.40	6+	E1	Mult.: from $\gamma(\theta)$ and linear polarization (1988Ma49): $A_2 = -0.41 \ I0, \ A_4 = 0.0 \ 2, \ pol = 0.62 \ 25 \ in \ ^{96}Zr(^{34}S,6n\gamma),$ $A_2 = -0.23 \ 6 \ in \ ^{110}Cd(^{18}O,4n\gamma) \ (1988Ma49); \ A_2 = -0.238 \ I9, \ A_4 = +0.03 \ 3 \ in \ ^{110}Cd(^{16}O,3n\gamma) \ (1989Ko19);$ $PCO = 0.56 \ 5 \ A = +0.225 \ in \ ^{110}Cd(^{16}O,2n\gamma) \ (1000Pi11)$
1038.6 4	1.4	2267.01	5-	1228.40	6+	D	$A_2 = -0.23 \ 23 \ in \ ^{110}Cd(^{18}O, 4ny) \ (1988Ma49); \ DCO = 0.8 \ 3$ in $^{110}Cd(^{16}O, 2ny) \ (1990Pi11)$
1053.0 4		2975.19	(9^{+})	1923.32	8+		
1057.0 2	1.2	2285.32	(7 ⁺)	1228.40	6+	(D+Q)	I _{γ} : from I(612.2 γ)/I(1056.6 γ)=3.6/1.4 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
							DCO=1.0 3 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11) A ₂ =+0.22 9, A ₄ =+0.20 13 in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19).
1070.0 4	<1	9054.0	(24^{+})	7984.0	(22+)		
1071 ⁰ 1078.0 4	≈1	1721.7 8795.1	(3^{-}) (24^{+})	651.67 7717.1	4 ⁺ (22 ⁺)		from 2005Mb05. Intensity is not given.
^x 1088 [#] 1					- 1	_	$A_2 = -0.45$ in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49).
1094.5 3	2.0	1324.77	4 ⁺	229.91	2+	Q	DCO=1.2 4, A ₂ = -0.21 5 in ¹¹⁰ Cd(¹⁰ O,2n\gamma) (1990Pi11).
1100.7 <i>4</i> 1130.9 <i>2</i>	2.1 3.8	9612.9 2359.37	(25) $(6)^{-}$	8512.2 1228.40	(23) 6 ⁺	D	$A_2 = +0.43 \ I8 \ in \ {}^{110}Cd({}^{18}O,4n\gamma) \ (1988Ma49); A_2 = +0.25 \ 4,$ $A_4 = +0.03 \ 6 \ in \ {}^{110}Cd({}^{16}O,3n\gamma) \ (1988Ka49); DCO = 1.06$
1156.3.4	~1	0051 /	(26^{+})	8705 1	(24^{+})	0	$7, A_2 = -0.21 \ 8 \ in \ {}^{110}Cd({}^{16}O, 2n\gamma) \ (1990Pi11).$
1231.8 4	≈ 1 ≈ 1	11183.2	(20^{-})	9951.4	(24^{-}) (26^{+})	Q	DCO=0.9715 III $Zi(-5,4iiy) (19901111).$
1260.6 3	3.6	1912.76	5-	651.67	4+	E1	Mult.: from $\gamma(\theta)$ and linear polarization (1988Ma49): A ₂ =-0.45 <i>10</i> , A ₄ =+0.4 <i>3</i> , pol=0.37>in ⁹⁶ Zr(³⁴ S,6n γ), A ₂ =-0.25 <i>12</i> in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49); A ₂ =-0.19 4, A ₄ =+0.06 6 in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19); DCO=0.55 <i>7</i> , A ₂ =+0.18 <i>13</i> in ¹¹⁰ Cd(¹⁶ O,2n γ)
1308 7 4	0.8	12491 9	(30^{+})	11183.2	(28^{+})		(19902111).
1381.6 3	0.8	2033.55	(4 ⁻)	651.67	(20) 4 ⁺	D	A ₂ =+0.31 20 in ¹¹⁰ Cd(¹⁸ O,4n γ) (1988Ma49); A ₂ =+0.35 9, A ₄ =+0.09 13 in ¹¹⁰ Cd(¹⁶ O,3n γ) (1989Ko19); DCO=0.91 21 in ¹¹⁰ Cd(¹⁶ O,2n γ) (1990Pi11).
1389.1 <i>4</i> 1455.0 <i>4</i>	0.4 <1	13881.0 15336.0	(32 ⁺) (34 ⁺)	12491.9 13881.0	(30 ⁺) (32 ⁺)		

$\gamma(^{124}\text{Ba})$ (continued)

E_{γ}^{\dagger}	I _γ ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. <mark>&</mark>	Comments
1492 [@] 1		1721.7	(3-)	229.91	2+		observed In coincidence with 345 keV and (326 keV or 312 keV) G.
1615.0 4	0.8	2267.01	5-	651.67	4+	D	$A_2 = -0.3 \ 3 \ in \ ^{110}Cd(^{18}O,4n\gamma) \ (1988Ma49); \ DCO = 0.73 \ 23 \ in \ ^{110}Cd(^{16}O,2n\gamma) \ (1990Pi11).$

[†] E γ with Δ E<0.5 keV are from ¹¹¹Cd(¹⁶O,3n γ) (1989Ko19). Other E γ 's are from ⁹⁴Zr(³⁴S,4n γ) E=145 MeV and ¹¹⁰Cd(¹⁶O,2n γ) E=60 MeV (1990Pi11); Δ E=0.4 keV is assigned by the evaluators.

[±] From 94 Zr(34 S,4n γ) E=145 MeV (1990Pi11); relative to I(229.8 γ)=100.

[#] Only reported by 1988Ma49 as γ 's originating from 2646- and 3096-keV levels in their decay scheme.

[@] From 2005Ma84. Intensity is not given.

[&] From $\gamma(\theta)$ (1989Ko19, 1988Ma49, 1990Pi11) and DCO data (1990Pi11), unless otherwise noted. These data are included in the comment column, note, however, that the signs of A₂ given by 1990Pi11 are opposite because of the use of Rose and Brink phase convention.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹²⁴₅₆Ba₆₈

¹²⁴₅₆Ba₆₈

¹²⁴₅₆Ba₆₈

(HI,xnγ) 1990Pi11,1989Ko19,1988Ma49

¹²⁴₅₆Ba₆₈

(HI,xnγ) 1990Pi11,1989Ko19,1988Ma49

¹²⁴₅₆Ba₆₈

