124 La ε decay 1992Id01,1997As05

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. Katakura, Z. D. Wu	NDS 109, 1655 (2008)	1-Apr-2008

Parent: ¹²⁴La: E=0.0+x; J^{π} =(8⁻); $T_{1/2}$ =29.21 s 17; Q(ε)=8.83×10³ 6; % ε +% β ⁺ decay=100.0 Parent: ¹²⁴La: E=0.0+y; $T_{1/2}=21 \text{ s } 4$; Q(ε)=8.83×10³ 6; $\%\varepsilon+\%\beta^+$ decay=100.0

¹²⁴La(0.0+y)-Low-spin isomer.

The decay scheme is that proposed by 1992Id01. The decay scheme is from combined decay of high-spin ($T_{1/2}=29 \text{ s } I$) and low-spin ($T_{1/2} < 1$ s) states in ¹²⁴La. β branchings and log *ft* values from high-spin state given in 1992Id01 are only approximate

 values and the sum represents 88% of total decay. These values are not given here.
 1992Id01: ⁹²Mo(³⁵Cl,2pn), ⁹²Mo(⁴⁰Ca,5p3n); E(³⁵Cl)=5.4-6.5 MeV/nucleon, on-line ms, semi γ, ce, γγ-coin.
 1997As05: ⁹²Mo(³⁶Ar,3pn); E=195 MeV, enriched ⁹²Mo, HPGe detectors, measured Eγ, γγ-coin,γγ directional correlation. 1992Mo13: Mo(35 Cl,2pxn); measured: $\beta\gamma$ (t).

¹²⁴Ba Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}	11.0 min 5	
229.68 19	2+	0.297 ns 26	$T_{1/2}$: from $\beta \gamma$ (t) (1992Mo13).
651.17 25	4+		
872.6 <i>3</i>	2+		
898.0? 10	0^{+}		
1071.1 11	0^{+}		$A_2(841\gamma) (230\gamma)(\theta)=0.33 \ 7 \ A_4(841\gamma) (230\gamma)(\theta)=0.85 \ 12 \ (1997As05).$
1162.2 5	(3^{+})		
1227.7 <i>3</i>	6+		
1323.8 <i>3</i>	4+		
1353.3 10	(2^{+})		
1356.7 11	0^{+}		$A_2(1127\gamma) (230\gamma)(\theta) = 0.32 \ 15, \ A_4(1127\gamma) (230\gamma)(\theta) = 1.23 \ 28 \ (1997As05).$
1672.1 4	(5^{+})		
1739.1? 6	(4^{+})		
1857.2 4	$(6)^{+}$		
1912.5 4	5-		
1922.4 4	8+		
2033.6 4	(4 ⁻)		
2261.2 4	$(7)^{-}$		
2266.4 4	5-		
2359.0 4	(6)-		
2459.3? 5	-		
2477.2 11	(8^{+})		
2646.8 6	(7^{-})		
2704.2 5	$(8)^{-}$		
2720.5 6	(9-)		
3095.1 5	(7^{-})		

[†] From a least-squares fit to $E\gamma's$.

[‡] From Adopted Levels, unless otherwise indicated.

$$\frac{E_{\gamma}^{\dagger}}{192.9^{a}\ 2} \quad \frac{I_{\gamma}^{\dagger}{}^{\#}}{5.7\ 6} \quad \frac{E_{i}(\text{level})}{2459.3?} \quad \frac{J_{i}^{\pi}}{-} \quad \frac{E_{f}}{2266.4} \quad \frac{J_{f}^{\pi}}{5^{-}} \quad \frac{\text{Mult.}^{\&}}{\text{M1}} \quad \frac{\alpha^{@}}{0.1577} \quad \frac{\alpha^{(124}\text{Ba})}{\alpha(K)=0.1352\ 20;\ \alpha(L)=0.0179\ 3;\ \alpha(M)=0.00369\ 6;} \\ \alpha(N+..)=0.000928\ 14 \\ \alpha(N)=0.000797\ 12;\ \alpha(O)=0.0001220\ 18;\ \alpha(P)=8.88\times10^{-6} \\ 13 \end{cases}$$

¹²⁴La ε decay 1992Id01,1997As05 (continued)

$\gamma(^{124}\text{Ba})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. <mark>&</mark>	$\alpha^{@}$	Comments
			_					The placement is different from those in (HI,xn γ) and 64 Ni(64 Ni,4n γ). α (K)exn=0.115.15
229.7 2	100	229.68	2+	0.0	0+	E2	0.1080	$\begin{array}{l} B(E2)(W.u.)=73 \ 7\\ \alpha(K)=0.0854 \ 13; \ \alpha(L)=0.0179 \ 3; \ \alpha(M)=0.00380 \ 6; \\ \alpha(N+)=0.000919 \ 14 \end{array}$
								α (N)=0.000801 <i>12</i> ; α (O)=0.0001129 <i>17</i> ; α (P)=4.64×10 ⁻⁶ 7 α (K)exp=0.086 5. Mult : from adopted gammas
261 ^{<i>a</i>}	≈1.5	2720.5	(9 ⁻)	2459.3?	-			E _{γ} : γ -ray observed only in coin. Not observed in (HI xn γ) and ⁶⁴ Ni(⁶⁴ Ni 4n γ)
325.4 4	≈2	2359.0	(6)-	2033.6	(4 ⁻)			E_{γ} : γ -ray observed only in coin.
345.2 4	1.4 3	2704.2	(8)-	2359.0	(6)-	E2	0.0291	$\alpha(\mathbf{K})=0.0240 \ 4; \ \alpha(\mathbf{L})=0.00409 \ 6; \ \alpha(\mathbf{M})=0.000860 \ 13; \ \alpha(\mathbf{N}+)=0.000210 \ 3$
								$\alpha(N)=0.000183 3; \alpha(O)=2.65\times10^{-5} 4;$ $\alpha(P)=1.385\times10^{-6} 20$ $\alpha(K)=n=0.032 13$
								Mult.: From $\alpha(K)$ exp and relevant levels.
348.5 4	0.8 3	2261.2	(7)-	1912.5	5-	E2	0.0283	$\alpha(K)=0.0233 4; \alpha(L)=0.00396 6; \alpha(M)=0.000832 13;$
								$\alpha(N+)=0.000204.5$ $\alpha(N)=0.000177.3; \alpha(O)=2.57\times10^{-5}.4;$
								$\alpha(P)=1.348\times10^{-6}\ 20$
								$\alpha(\text{K})\exp=0.029 \ 9.$
385 6 4	123	2646.8	(7^{-})	2261.2	$(7)^{-}$	D		Mult.: From adopted gammas. $\alpha(K) \exp -0.0055$ 12
505.0 7	1.2 5	2010.0	(7)	2201.2	(7)	D		Mult.: From adopted gammas. 1992Id01 assigned E1, but the assignment contradicts the spin assignment
							0.04.600	of ${}^{64}\text{Ni}({}^{64}\text{Ni},4n\gamma)$.
421.5 2	913	651.17	4+	229.68	2*	E2	0.01600	$\alpha(K)=0.01333$ 19; $\alpha(L)=0.00212$ 3; $\alpha(M)=0.000442$ 7; $\alpha(N+)=0.0001089$ 16
								$\alpha(N)=9.42\times10^{-5} \ 14; \ \alpha(O)=1.384\times10^{-5} \ 20; \\ \alpha(P)=7.89\times10^{-7} \ 11$
								$\alpha(\mathbf{K}) \exp = 0.013 \ I.$
443.0 4	1.9 <i>3</i>	2704.2	(8)-	2261.2	(7)-	M1	0.0178	Mult.: from adopted gammas. $\alpha(K)=0.01533\ 22;\ \alpha(L)=0.00198\ 3;\ \alpha(M)=0.000407$
								$\alpha(N) = 8.79 \times 10^{-5} 13; \ \alpha(O) = 1.349 \times 10^{-5} 20;$
								$\alpha(P)=9.95\times10^{-7}$ 15 $\alpha(K)=0.020$ 4
446.7 <i>3</i>	3.1 <i>3</i>	2359.0	(6)-	1912.5	5-	M1	0.01745	$\alpha(K) \exp[-0.020]$ 4. $\alpha(K) = 0.01501$ 22; $\alpha(L) = 0.00194$ 3; $\alpha(M) = 0.000399$
								6; $\alpha(N+)=0.0001002 \ I5$ $\alpha(N)=8.60\times10^{-5} \ I3$; $\alpha(O)=1.321\times10^{-5} \ I9$;
								$\alpha(P)=9.74\times10^{-7}$ 14
451 0 0	264	1222.0	4+	970 (2+	EO	0.01214	$\alpha(K) \exp[=0.017 \ 3.$
451.2 2	3.0 4	1323.8	4	872.0	Ζ.	E2	0.01314	$\alpha(\mathbf{K})=0.01099\ 16;\ \alpha(\mathbf{L})=0.001707\ 24;$ $\alpha(\mathbf{M})=0.000356\ 5;\ \alpha(\mathbf{N}+)=8.78\times10^{-5}\ 13$
								$\alpha(N) = 7.60 \times 10^{-5} II; \alpha(O) = 1.120 \times 10^{-5} I6;$
								$\alpha(P)=6.55 \times 10^{-7} \ 10$ $\alpha(K)=0.016 \ 4$
								Ice(K) deduced after subtraction of Ice(L) of the 421.5-keV transition.
	a -		(Q.)					Mult.: From adopted gammas.
455 <mark>4</mark> 533.3 <i>3</i>	≈2.5 4.5.5	2720.5 1857.2	(9^{-}) $(6)^{+}$	2266.4 1323.8	5- 4+	E2	0.00827	E_{γ} : γ -ray observed only in coin. $\alpha(K)=0.00697$ 10; $\alpha(L)=0.001031$ 15:
			(-)		-			,

¹²⁴La ε decay **1992Id01,1997As05** (continued)

$\gamma(^{124}\text{Ba})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^{&}	α@	Comments
576.6 2	60 2	1227.7	6+	651.17	4+	E2	0.00672	$\alpha(M)=0.000214 \ 3; \ \alpha(N+)=5.31\times10^{-5} \ 8 \\ \alpha(N)=4.58\times10^{-5} \ 7; \ \alpha(O)=6.82\times10^{-6} \ 10; \\ \alpha(P)=4.21\times10^{-7} \ 6 \\ \alpha(K)\exp=0.0090 \ 8. \\ Mult.: From adopted gammas. \\ \alpha(K)=0.00568 \ 8; \ \alpha(L)=0.000824 \ 12; \\ \alpha(M)=0.0001710 \ 24; \ \alpha(N+)=4.24\times10^{-5} \ 6 \\ \alpha(N)=3.66\times10^{-5} \ 6; \ \alpha(O)=5.46\times10^{-6} \ 8; \\ \alpha(N)=0.00568 \ 3; \ \alpha(D)=0.46\times10^{-6} \ 8; \\ \alpha(N)=0.00568 \ \alpha(D)=5.46\times10^{-6} \ 8; \\ \alpha(N)=0.00568 \ \alpha(D)=0.00568 \ \alpha(D)=0.00$
620 629.5 <i>4</i>	≈2 3.1 5	2477.2 1857.2	(8^+) $(6)^+$	1857.2 1227.7	$(6)^+$ 6^+	M1	0.00747	$\alpha(P)=3.45\times10^{-7}5$ Mult.: from adopted gammas. E_{γ} : γ -ray observed only in coin. $\alpha(K)=0.00644$ 9; $\alpha(L)=0.000822$ 12; $\alpha(M)=0.0001688$ 24; $\alpha(N+)=4.25\times10^{-5}$ 6 $\alpha(N)=3.64\times10^{-5}$ 6; $\alpha(O)=5.60\times10^{-6}$ 8; $\alpha(P)=4.16\times10^{-7}$ 6
643.1 <i>4</i>	3.8 <i>3</i>	872.6	2+	229.68	2+	M1,E2	0.0061 11	$\alpha(\mathbf{K}) = 4.10 \times 10^{-6} \text{ or } 0$ $\alpha(\mathbf{K}) = 0.0080 \ 15.$ $\alpha(\mathbf{K}) = 0.0052 \ 9; \ \alpha(\mathbf{L}) = 0.00069 \ 9;$ $\alpha(\mathbf{M}) = 0.000143 \ 17; \ \alpha(\mathbf{N}+) = 3.6 \times 10^{-5} \ 5$ $\alpha(\mathbf{N}) = 3.1 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 4.7 \times 10^{-6} \ 7;$ $\alpha(\mathbf{P}) = 3.3 \times 10^{-7} \ 7$
668 ^a 5	≈1.5	898.0?	0^{+}	229.68	2+			$\alpha(K) \exp=0.0068 \ I0.$ I _{γ} (668)/I _{γ} (643)<0.006 deduced by 1997As05 showed this gamma-ray should
672.6 2	7.6 8	1323.8	4+	651.17	4+	M1,E2	0.0055 10	not exist. $\alpha(K)=0.0047 \ 9; \ \alpha(L)=0.00062 \ 8;$ $\alpha(M)=0.000128 \ 16; \ \alpha(N+)=3.2\times10^{-5} \ 5$ $\alpha(N)=2.7\times10^{-5} \ 4; \ \alpha(O)=4.2\times10^{-6} \ 6;$ $\alpha(P)=2.9\times10^{-7} \ 6$
685.0 <i>4</i>	1.7 4	1912.5	5-	1227.7	6+	(E1)	1.62×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K})\exp=0.0063 \ 5. \\ &\alpha(\mathbf{K})=0.001403 \ 20; \ \alpha(\mathbf{L})=0.0001745 \ 25; \\ &\alpha(\mathbf{M})=3.57\times10^{-5} \ 5; \ \alpha(\mathbf{N}+)=8.94\times10^{-6} \ 13 \\ &\alpha(\mathbf{N})=7.68\times10^{-6} \ 11; \ \alpha(\mathbf{O})=1.173\times10^{-6} \ 17; \\ &\alpha(\mathbf{P})=8.49\times10^{-8} \ 12 \end{aligned}$
694.7 <i>3</i>	18.0 7	1922.4	8+	1227.7	6+	E2	0.00419	$\alpha(K)\exp \le 0.0030.$ $\alpha(K)=0.00356 5; \ \alpha(L)=0.000496 7;$ $\alpha(M)=0.0001026 15; \ \alpha(N+)=2.55\times 10^{-5} 4$ $\alpha(N)=2.20\times 10^{-5} 3; \ \alpha(O)=3.31\times 10^{-6} 5;$ $\alpha(P)=2.19\times 10^{-7} 3$ $\alpha(K)\exp=0.0042 5.$
798.0 <i>5</i>	3.6 6	2720.5	(9 ⁻)	1922.4	8+	(E1)	1.18×10 ⁻³	Mult.: From adopted gammas. $\alpha(K)=0.001024 \ 15; \ \alpha(L)=0.0001266 \ 18; \ \alpha(M)=2.59\times10^{-5} \ 4; \ \alpha(N+)=6.49\times10^{-6} \ 10$ $\alpha(N)=5.58\times10^{-6} \ 8; \ \alpha(O)=8.53\times10^{-7} \ 12; \ \alpha(P)=6.22\times10^{-8} \ 9$
834.0 4	5.1 5	3095.1	(7 ⁻)	2261.2	(7)-	M1	0.00381	$\alpha(K)\exp \le 0.002.$ $\alpha(K)=0.00329 5; \ \alpha(L)=0.000416 6;$ $\alpha(M)=8.54\times10^{-5} 12; \ \alpha(N+)=2.15\times10^{-5} 3$ $\alpha(N)=1.84\times10^{-5} 3; \ \alpha(O)=2.83\times10^{-6} 4;$ $\alpha(P)=2.11\times10^{-7} 3$ $\alpha(K)\exp=0.0045 5.$
841.4 [‡] 872.5 <i>5</i>	3.0 6	1071.1 872.6	$0^+ 2^+$	229.68 0.0	$2^+_{0^+}$	E2	0.00245	$\alpha(K)=0.00210 \ 3; \ \alpha(L)=0.000280 \ 4;$

				¹²⁴ La	ε dec	ay <mark>1992</mark>	Id01,1997As0	5 (continued)
γ ⁽¹²⁴ Ba) (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.&	α [@]	$I_{(\gamma+ce)}$	Comments
									$\alpha(M)=5.77\times10^{-5} 9;\alpha(N+)=1.442\times10^{-5} 21\alpha(N)=1.241\times10^{-5} 18;\alpha(O)=1.88\times10^{-6} 3;\alpha(P)=1.296\times10^{-7} 19\alpha(K)=0023 4$
898 ^a		898.0?	0+	0.0	0+	E0		0.0094 13	$I_{(\gamma+ce)}$: calculated by Ice(E0)=Ice(K)(E0)×1.13 to include the contribution from L1 and higher shells
932.5 4	5.5 5	1162.2	(3 ⁺)	229.68	2+				E_{γ} : γ -ray observed only in
942.4 4	1.8 4	2266.4	5-	1323.8	4+	E1	8.53×10 ⁻⁴		$\alpha(K) = 0.000739 \ 11;$ $\alpha(L) = 9.08 \times 10^{-5} \ 13;$ $\alpha(M) = 1.85 \times 10^{-5} \ 3;$ $\alpha(N+) = 4.65 \times 10^{-6} \ 7$ $\alpha(N) = 4.00 \times 10^{-6} \ 6;$ $\alpha(O) = 6.12 \times 10^{-7} \ 9;$ $\alpha(P) = 4.50 \times 10^{-8} \ 7$ $\alpha(K) \exp = 0.0008 \ 4.$
1020.9 3	4.9 6	1672.1	(5 ⁺)	651.17	4+	M1,E2	0.0021 4		$\alpha(K) = 0.0018 \ 3; \ \alpha(L) = 0.00023 4; \ \alpha(M) = 4.6 \times 10^{-5} \ 7; \alpha(N+) = 1.17 \times 10^{-5} \ 17 \alpha(N) = 1.00 \times 10^{-5} \ 15; \alpha(O) = 1.53 \times 10^{-6} \ 23; \alpha(P) = 1.12 \times 10^{-7} \ 20 \alpha(K) = 0.0015 \ 3$
1033.5 3	18.2 5	2261.2	(7)-	1227.7	6+	E1	7.16×10 ⁻⁴		$\alpha(K) = 0.000620 \ 9;$ $\alpha(L) = 7.60 \times 10^{-5} \ 11;$ $\alpha(M) = 1.553 \times 10^{-5} \ 22;$ $\alpha(N+) = 3.90 \times 10^{-6} \ 6$ $\alpha(N) = 3.35 \times 10^{-6} \ 5;$ $\alpha(O) = 5.13 \times 10^{-7} \ 8;$ $\alpha(P) = 3.78 \times 10^{-8} \ 6$ $\alpha(K) = 0.00046 \ 9$
1039.0 <i>5</i>	3.5 10	2266.4	5-	1227.7	6+	E1	7.09×10 ⁻⁴		$\alpha(K) exp=0.00064 \ 9,$ $\alpha(K) = 0.000614 \ 9,$ $\alpha(L) = 7.53 \times 10^{-5} \ 11;$ $\alpha(M) = 1.537 \times 10^{-5} \ 22;$ $\alpha(N+) = 3.86 \times 10^{-6} \ 6$ $\alpha(N) = 3.31 \times 10^{-6} \ 5;$ $\alpha(O) = 5.08 \times 10^{-7} \ 8;$ $\alpha(P) = 3.74 \times 10^{-8} \ 6$ $\alpha(K) exp = 0.00054 \ 27.$
1088.0 ^{<i>a</i>} 5	1.8 4	1739.1?	(4 ⁺)	651.17	4+	M1,E2	0.0018 3		$\begin{aligned} &\alpha(\mathbf{K}) = 0.00154 \ 24; \\ &\alpha(\mathbf{L}) = 0.00020 \ 3; \\ &\alpha(\mathbf{M}) = 4.0 \times 10^{-5} \ 6; \\ &\alpha(\mathbf{N}+) = 1.01 \times 10^{-5} \ 15 \\ &\alpha(\mathbf{N}) = 8.7 \times 10^{-6} \ 12; \\ &\alpha(\mathbf{O}) = 1.33 \times 10^{-6} \ 20; \\ &\alpha(\mathbf{P}) = 9.7 \times 10^{-8} \ 17 \\ &\alpha(\mathbf{K}) \exp = 0.0019 \ 4. \end{aligned}$ Other placement with 3351 keV level to 2263 keV level (1995As05).

$^{124}\mathbf{La}\ \varepsilon$ decay 1992Id01,1997As05 (continued)

$\gamma(^{124}Ba)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E _f J	$\frac{\pi}{f}$ Mult. $\&$	α@	Comments
1094.0 5	1.5 5	1323.8	4+	229.68 2	.+ Q	1.49×10 ⁻³	$\begin{aligned} &\alpha(\text{K}) = 0.001285 \ 18; \ \alpha(\text{L}) = 0.0001666 \ 24; \\ &\alpha(\text{M}) = 3.42 \times 10^{-5} \ 5; \ \alpha(\text{N}+) = 8.57 \times 10^{-6} \ 12 \\ &\alpha(\text{N}) = 7.37 \times 10^{-6} \ 11; \ \alpha(\text{O}) = 1.123 \times 10^{-6} \ 16; \\ &\alpha(\text{P}) = 7.98 \times 10^{-8} \ 12 \\ &\alpha(\text{K}) \exp = 0.0026 \ 6. \end{aligned}$ Mult.: From adopted gammas. 1992Id01 assigned M1, but M1 assignment contradicts the mult.=Q assignment in \ ^{64}\text{Ni}(^{64}\text{Ni}, 4n\gamma). \end{aligned}
1127‡		1356.7	0^{+}	229.68 2	+		-
1131.0 3	7.7 4	2359.0	(6)-	1227.7 6	+ E1	6.13×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000525 \ 8; \ \alpha(\mathbf{L}) = 6.42 \times 10^{-5} \ 9; \\ &\alpha(\mathbf{M}) = 1.311 \times 10^{-5} \ 19; \ \alpha(\mathbf{N}+) = 1.032 \times 10^{-5} \ 16 \\ &\alpha(\mathbf{N}) = 2.83 \times 10^{-6} \ 4; \ \alpha(\mathbf{O}) = 4.33 \times 10^{-7} \ 6; \\ &\alpha(\mathbf{P}) = 3.20 \times 10^{-8} \ 5; \ \alpha(\mathbf{IPF}) = 7.02 \times 10^{-6} \ 12 \\ &\alpha(\mathbf{K}) \exp = 0.0005 \ 2. \end{aligned}$
1173 <i>I</i>	>3.5	3095.1	(7 ⁻)	1922.4 8	+ (E1)	5.86×10 ⁻⁴	$\begin{aligned} \alpha(\mathrm{K}) &= 0.000492 \ 7; \ \alpha(\mathrm{L}) &= 6.00 \times 10^{-5} \ 9; \\ \alpha(\mathrm{M}) &= 1.226 \times 10^{-5} \ 18; \ \alpha(\mathrm{N}+) &= 2.18 \times 10^{-5} \ 5 \\ \alpha(\mathrm{N}) &= 2.64 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) &= 4.05 \times 10^{-7} \ 6; \\ \alpha(\mathrm{P}) &= 3.00 \times 10^{-8} \ 5; \ \alpha(\mathrm{IPF}) &= 1.87 \times 10^{-5} \ 5 \\ \alpha(\mathrm{K}) &= x \times 10^{-5} \ 5 \\ \alpha(\mathrm{K}) &= x \times 10^{-5} \ 5 \end{aligned}$
1261.4 3	9.4 5	1912.5	5-	651.17 4	+ E1	5.59×10 ⁻⁴	$\alpha(K)=0.000432 \ 6; \ \alpha(L)=5.26\times10^{-5} \ 8; \alpha(M)=1.074\times10^{-5} \ 15; \ \alpha(N+)=6.32\times10^{-5} \ 9 \alpha(N)=2.32\times10^{-6} \ 4; \ \alpha(O)=3.56\times10^{-7} \ 5; \alpha(P)=2.64\times10^{-8} \ 4; \ \alpha(IPF)=6.05\times10^{-5} \ 9 \alpha(K)\exp=0.0005 \ 1.$
1353.3 [‡] 1382.5 4 1493 ^a 1 1615 1 1867 1	2.5 5 3 1 2.9 6 5 1	1353.3 2033.6 2720.5 2266.4 3095.1	(2^+) (4^-) (9^-) 5^- (7^-)	0.0 0 651.17 4 1227.7 6 651.17 4 1227.7 6	+ + + + +		Not observed in (HI,xn γ) and ⁶⁴ Ni(⁶⁴ Ni,4n γ).

[†] From 1992Id01. [‡] From 1997As05. [#] Relative to I(230 γ)=100. [@] α (K)exp are from Ice(K)/I γ normalized to α (K)(E2)=0.00569 for 577 γ (6⁺ to 4⁺).

[&] From $\alpha(K)$ exp in 1992Id01, unless otherwise noted.

^{*a*} Placement of transition in the level scheme is uncertain.

6

 $^{124}_{56}\mathrm{Ba}_{68}$ -6