		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 174,1 (2021)	15-Apr-2021

This datasets contains data for normal-deformed (ND) bands from the measurement of ${}^{80}\text{Se}({}^{48}\text{Ca},5n\gamma)$. See 2021Ba03 for data of super-deformed bands from the same measurement.

2020Ba12: E=207 MeV ⁴⁸Ca beam was produced from the ATLAS accelerator at ANL. Target was 0.6 mg/cm² ⁸⁰Se on a 0.3 mg/cm² Au backing. γ rays were detected with the Gammasphere array of 101 Compton-suppressed Ge detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma\gamma$ -coin, γ angular intensity ratios. Deduced levels, J, π , band structures, γ -ray multipolarities. Comparisons with Cranked Nilsson-Strutinsky (CNS) calculations.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^π ‡	E(level) [†]	J ^π ‡
0.0		2822.0 ⁰ 6	$23/2^{+}$	5064.5 [°] 9	$(33/2^{-})$	7481.7 ^h 7	$45/2^{+}$
97.38 <mark>8</mark> <i>3</i>	$3/2^{+}$	2882.1 ⁿ 6	$23/2^{+}$	5066.5 <mark>0</mark> 7	$35/2^{+}$	7617.4 [@] 8	$45/2^{-}$
180.76 4	$5/2^{+}$	2950.7 ^f 8	$25/2^{-}$	5109.4 11	33/2-	7780.7 10	$45/2^{-}$
185.31 20	7/2-	2963.9 ^g 6	$23/2^{+}$	5207.4 ⁿ 9	35/2+	7807.5 ^m 20	$45/2^{+}$
206.4 3	9/2-	2965.3 ^e 6	$27/2^{-}$	5213.3 9	$(35/2^{-})$	7840.2 20	
252.02 ⁿ 5	7/2+	2991.2 6	$27/2^{-}$	5285.8 11	$(33/2^{-})$	7969.8 <mark>°</mark> 8	$45/2^{-}$
263.41 ^e 25	$11/2^{-}$	3152.6 ⁰ 8	$25/2^{-}$	5328.9 ^b 13	$(33/2^{-})$	7990.9 ¹ 7	$47/2^{+}$
306.8 7	5/2+	3169.0 6	$25/2^+$	5337.8 [#] 6	35/2-	8075.3 [#] 9	47/2-
437.8 ⁸ 8	7/2+	3209.8 ^m 7	$25/2^+$	5418.0 8	35/2-	8189.3 8	$47/2^{+}$
518.5 ^m 5	9/2+	3349.3 ¹ 6	$27/2^+$	5519.3 ^h 7	$37/2^+$	8218.2 ^e 8	$47/2^{-}$
662.1 6	$13/2^{-}$	3478.8 <mark>0</mark> 7	$27/2^+$	5585.3 ^{&} 10	35/2-	8224.9 &	$47/2^{-}$
719.1 ^e 6	$15/2^{-}$	3559.4 ⁿ 8	$27/2^{+}$	5651.0 ^m 14	37/2+	8298.3 ⁰ 9	$(47/2^+)$
767.6 ⁿ 6	$11/2^{+}$	3820.2 ^h 6	$29/2^+$	5687.3 9	35/2-	8363.6 9	$47/2^{-}$
877.2 ⁶ 8	$13/2^{-}$	3853.7 ^a 7	$(27/2^{-})$	5793.4 [@] 7	37/2-	8448.6 ⁿ 14	$(47/2^+)$
934.8 <mark>8</mark> 10	$11/2^{+}$	3905.2 ^m 9	$29/2^+$	5915.5 ⁱ 7	39/2+	8453.6 ^h 7	$49/2^{+}$
1082.0 ^m 6	$13/2^{+}$	3907.9 [#] 6	$27/2^{-}$	6034.1 ⁰ 7	39/2+	8690.6 [@] 9	$(49/2^{-})$
1269.8 ^{<i>a</i>} 7	$15/2^{-}$	3951.1 ^e 6	$31/2^{-}$	6045.8 ^e 7	39/2-	8694.0 8	49/2+
1293.6 ^f 7	$17/2^{-}$	3956.0 ^ƒ 9	$(29/2^{-})$	6048.5 ^f 10	$(37/2^{-})$	8955.2 [°] 8	49/2-
1335.7 <mark>°</mark> 6	19/2-	4019.1 7	$29/2^+$	6070.1 [°] 7	37/2-	8975.1 <i>15</i>	$(49/2^{-})$
1397.5 ⁿ 7	$15/2^+$	4103.4 ^b 8	$29/2^{-}$	6133.8 [#] 7	39/2-	9123.9 ¹ 7	$51/2^+$
1522.0 ^b 8	$17/2^{-}$	4155.6 ⁱ 6	$31/2^+$	6165.1 ⁿ 9	39/2+	9257.4 [#] 9	$(51/2^{-})$
1553.7 <mark>8</mark> 10	$15/2^{+}$	4213.1 ⁰ 7	$31/2^{+}$	6374.1 ^{&} 8	39/2-	9356.8 ^d 9	53/2-
1757.5 ^m 6	$17/2^{+}$	4283.6 [@] 7	$29/2^{-}$	6418.2 7	39/2-	9376.9 ^{&} 13	$(51/2^{-})$
1953.3 ^a 6	$19/2^{-}$	4325.3 ⁿ 9	$31/2^+$	6464.9 7	39/2-	9418.8 ^h 8	$53/2^{+}$
2062.1 ^f 8	$21/2^{-}$	4354.9 9	$(31/2^{-})$	6477.0 ^h 7	$41/2^{+}$	9422.8 ^e 10	$51/2^{-}$
2089.4 ^e 6	$23/2^{-}$	4608.9 [#] 6	31/2-	6655.2 [@] 7	$41/2^{-}$	9465.2 ^p 11	
2112.2 ⁿ 6	$19/2^{+}$	4627.4 ^h 7	$33/2^{+}$	6683.8 ^m 17	$41/2^{+}$	9566.3 ⁰ 14	$(51/2^+)$
2227.3 12	$(23/2^{-})$	4724.6 ^m 10	$33/2^{+}$	6789.2 ^C 7	$41/2^{-}$	9590.7 <i>14</i>	
2230.2 ^g 7	$19/2^{+}$	4880.0 7	$33/2^{+}$	7066.9 [#] 8	$43/2^{-}$	9808.9 ^k 8	$(53/2^+)$
2284.4 ^b 8	$21/2^{-}$	4933.9 9	$(33/2^{-})$	7084.4 ⁱ 7	$43/2^{+}$	9904.2 ^j 9	
2422.1 8	$19/2^{+}$	5010.2 ^e 7	$35/2^{-}$	7106.9 ^e 8	$43/2^{-}$	9906.5 [@] 9	$(53/2^{-})$
2497.1 ^m 6	$21/2^{+}$	5026.7 [@] 7	33/2-	7114.9 <mark>0</mark> 8	$43/2^{+}$	10068.1 ⁱ 8	$55/2^{+}$
2688.6 6	$\frac{1}{21/2^{+}}$	5036.2 ⁱ 7	35/2+	7257.6 ^{&} 8	43/2-	10135.1 9	55/2-
2769.5 ^a 6	23/2-	5043.2 ^f 10	(33/2-)	7278.8 ⁿ 9	43/2+	10489.5 [#] 10	(55/2-)

¹²³Xe Levels

2020Ba12 (continued)

				¹²³ Xe Lev	els (contin	ued)	
E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{π‡}	E(level) [†]	J ^{π‡}
10574.3 ^{&} 17	(55/2 ⁻)	11089.7 10	59/2-	11898.0? <mark>P</mark>		12858.4 <i>13</i>	
10597.0 ^h 9	$(57/2^+)$	11097.6 ^k 9	$57/2^{+}$	11998.7 ^e 15	$(59/2^{-})$	12921.0 ¹ 17	
10613.8 9	57/2+	11132.7 ^j 9		12039.9 <i>11</i>	$61/2^+$	13173.1 ^h 11	$(65/2^+)$
10634.4 ^P 15		11175.4 ⁱ 9	$(59/2^+)$	12146.4 ^k 11	$61/2^+$	13432.8 11	67/2-
10679.8 ^e 14	55/2-	11175.7 [@] 12	$(57/2^{-})$	12216.2?		13438.4 15	$65/2^{-}$
10708.1 ⁰ 17	$(55/2^+)$	11440.5 ¹ 13		12236.4 11	63/2-	14484.7 <i>12</i>	
10823.7 9	57/2+	11721.2 ^d 10	61/2-	12295.6 ^j 11		14521.3 12	
10890.5 ^d 10	57/2-	11808.4 ^h 10	$(61/2^+)$	12323.8 <i>13</i>		14554.2 18	$(69/2^{-})$
11046.1 10	57/2-	11851.1 <mark>0</mark> 20	$(59/2^+)$	12491.9 <i>11</i>	$63/2^{-}$	14760.0 <i>13</i>	69/2-

 80 Se(48 Ca,5n γ):Nd

 † From a least-squares fit to $\gamma\text{-ray energies, unless otherwise noted.}$

[‡] From 2020Ba12, based on measured γ angular intensity ratios, band structures, and known assignments of low-lying states. When considered in Adopted Levels, firm assignments by 2020Ba12 will be placed inside parentheses if there is lack of firm experimental evidences.

[#] Band(A): Band 1 based on $27/2^{-}$, $\alpha = -1/2$.

[@] Band(a): Band 2 based on $29/2^{-}$, $\alpha = +1/2$.

- & Band(B): Band 3 based on 35/2⁻.
- ^{*a*} Band(C): Band 4 based on $15/2^{-}$.
- ^b Band(D): Band 5 based on $13/2^-$.
- ^c Band(E): Band 6 based on $(33/2^{-})$.
- ^d Band(F): Band 7 based on $53/2^-$.
- ^e Band(G): Band 8 based on $11/2^-$.
- f Band(H): Band 9 based on $17/2^{-}$.
- ^g Band(I): Band 10 based on $3/2^+$.
- ^h Band(J): Band 11 based on $29/2^+$.
- ^{*i*} Band(K): Band 12 based on 27/2⁺.
- ^{*j*} Band(L): Band 12A based on 9905 level.
- ^k Band(M): Band 12B based on 9810 level.
- ^l Band(N): Band 12C based on 11441 level.
- ^{*m*} Band(O): Band 13 based on $9/2^+$.
- ^{*n*} Band(P): Band 14 based on $7/2^+$.
- ^o Band(Q): Band 15 based on 23/2⁺.
- ^p Band(R): Band 15A based on 9465 level.

$\gamma(^{123}\text{Xe})$

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	Comments
21.1 [#] 2		206.4	9/2-	185.31	7/2-		
57.0 [#] 2		263.41	$11/2^{-}$	206.4	9/2-		
66.7 [#] 2		252.02	$7/2^{+}$	185.31	$7/2^{-}$		
71.26 [#] 3		252.02	$7/2^{+}$	180.76	$5/2^{+}$		
78.1 ^{#} 2		263.41	$11/2^{-}$	185.31	7/2-		
83.38 [#] 2		180.76	$5/2^{+}$	97.38	$3/2^{+}$		
97.38 [#] 3		97.38	$3/2^{+}$	0.0			
131.2 10		437.8	7/2+	306.8	5/2+		
136.5 5	19 3	4155.6	31/2+	4019.1	29/2+	D+Q	$R_{\theta} = 0.52$ 5.

80 Se(48 Ca,5n γ):Nd	2020Ba12 (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	Comments
139.4 5	76 10	3349.3	$27/2^{+}$	3209.8	$25/2^+$	D+O	$R_{\theta}=0.67$ 7.
156.6 5	20 3	5036.2	$35/2^+$	4880.0	$33/2^{+}$	D+O	$R_{\theta} = 0.56 \ 6.$
180.4 2	$3.8 \times 10^2 4$	3349.3	$27/2^+$	3169.0	$25/2^+$	D+O	$R_{\theta}=0.65$ 6.
180.5 10		180.76	$5/2^+$	0.0			
199.4 5	17 2	11089.7	59/2-	10890.5	$57/2^{-}$	D+Q	$R_{\theta} = 0.78$ 7.
205.1 2	167 24	3169.0	$25/2^+$	2963.9	$\frac{23}{2^+}$		
209.5 10		306.8	$5/2^{+}$	97.38	$3/2^{+}$		
240.2 10	71	8694.0	$49/2^{+}$	8453.6	$49/2^{+}$	D+Q	$R_{\theta} = 1.07 \ 12.$
249.0 10		767.6	$11/2^{+}$	518.5	9/2+		
255.1 10		518.5	9/2+	263.41	$11/2^{-}$	D	R_{θ} =0.93 11.
266.2 10		518.5	9/2+	252.02	7/2+	D+Q	$R_{\theta} = 0.63 \ 6.$
266.3 10		2688.6	$21/2^{+}$	2422.1	$19/2^{+}$	D+Q	$R_{\theta} = 0.49 \ 6.$
275.3 10		2963.9	$23/2^+$	2688.6	$21/2^+$	D+Q	$R_{\theta} = 0.63 \ 7.$
287.0 2	113 16	3169.0	25/2+	2882.1	$23/2^+$	D+Q	$R_{\theta} = 0.60 5.$
294.6 5	10 2	9418.8	53/2+	9123.9	$51/2^+$	D+Q	$R_{\theta} = 0.48 \ 4.$
306.9 10		306.8	5/2+	0.0	o / o –		
312.2 10		518.5	9/2 ⁺	206.4	9/2-		
314.2 10		1082.0	13/2	767.6	11/2		
315.3 10	12.5	1397.5	15/2	1082.0	$13/2^{+}$		D 0 (0 5
324.6 5	43 5	6/89.2	41/2	6464.9	39/2	D+Q	$R_{\theta} = 0.68 \ S.$
323.4 10		4008.9	31/2 0/2±	4283.0	29/2 7/2-		
225.2.5	20.4	518.5 4155 6	$9/2^{+}$	185.51	$\frac{1}{2}$		B -0.72.7
227 9 10	50 4	4133.0	$\frac{51}{2}$	3820.2 180.76	29/2 5/2+	D+Q	$R_{\theta} = 0.727.$
340.2.10		/37.8	9/2 7/2+	07.38	$\frac{3}{2}$	0	$P_{0} = 1.23 I_{3}$
347.0.5	30.5	3160.0	25/2+	2822.0	$\frac{3}{2}$	Q	R_{θ} -1.25 15.
363 1 10	50 5	1082.0	$\frac{23/2}{13/2^+}$	719.1	$\frac{25/2}{15/2^{-}}$		
366.8.10		7481 7	$45/2^+$	7114.9	$\frac{13/2}{43/2^+}$	$D \pm O$	$R_{o} = 0.71.6$
371 1 5	19.2	6789.2	$\frac{43}{2}$	6418.2	$39/2^{-}$	D+Q	$R_{\theta} = 0.385$
375.6 10	17 2	4283.6	$29/2^{-}$	3907.9	$27/2^{-}$	D+Q	$R_{\theta} = 0.64 \ 6$
382.9 10	61	6070.1	$\frac{2}{37/2}$	5687.3	$35/2^{-}$	D+Q	$R_{\theta} = 0.67 \ 13.$
385.1 5	64.8	3349.3	$27/2^+$	2963.9	$\frac{23}{2^+}$	2.4	
392.6 10		1269.8	$15/2^{-}$	877.2	$13/2^{-}$		
394.8 5	11 2	6464.9	39/2-	6070.1	37/2-	D+Q	$R_{\theta} = 0.68 5.$
$396.3^{@}.2$	196 ^a 24	5915 5	$39/2^{+}$	55193	37/2+		
$3060^{0}10$	a	7481 7	45/2+	7084.4	13/2+		
399.0 10		662.1	13/2	263.41	$\frac{+3}{2}$ 11/2 ⁻		
401 3 10		5687.3	$35/2^{-}$	5285.8	$(33/2^{-})$		
401.6 2	169 20	9356.8	$53/2^{-}$	8955.2	$\frac{(33)}{2}$	0	$R_{a}=1.38$ 12.
403.7 10	107 20	4354.9	$(31/2^{-})$	3951.1	$31/2^{-}$	×	
408.6 5	17 2	5036.2	$35/2^+$	4627.4	$33/2^+$	D+O	$R_{\theta}=0.72$ 8.
417.8 5	35 4	5026.7	33/2-	4608.9	$31/2^{-}$	D+O	$R_{\theta} = 0.67$ 7.
430.1 5	16 2	9123.9	$51/2^{+}$	8694.0	$49/2^{+}$	D+Q	$R_{\theta} = 0.92 \ 10.$
430.9 10		1953.3	$19/2^{-}$	1522.0	$17/2^{-}$		
455.6 10		719.1	$15/2^{-}$	263.41	$11/2^{-}$		
455.7 10		662.1	13/2-	206.4	9/2-		
455.9 10		5793.4	$37/2^{-}$	5337.8	$35/2^{-}$	D+Q	$R_{\theta} = 0.68$ 7.
457.6 10		8075.3	47/2-	7617.4	45/2-		
462.7 2	111 12	8453.6	49/2+	7990.9	$47/2^{+}$	D+Q	$R_{\theta} = 0.71$ 7.
466.8 5	28 4	3349.3	$27/2^{+}$	2882.1	$23/2^{+}$		
470.9 ^(a) 2	190 ^a 23	3820.2	29/2 ⁺	3349.3	27/2+		
471.4 ^{••} 10	<i>u</i>	4627.4	$33/2^+$	4155.6	$31/2^+$	0	D 120 1/
480.3 2	10/ 15	3169.0	25/2+	2688.6	$21/2^+$	Q	$R_{\theta} = 1.39 \ 10.$
485.2 2	109 13	5519.3	31/21	5036.2	35/21	D+Q	$\kappa_{\theta} = 0.88 \ I0.$

$\gamma(^{123}\text{Xe})$ (continued) I_{γ}^{\ddagger} E_{γ}^{\dagger} Mult.^b E_i(level) \mathbf{J}_i^{π} E_f J_f^{π} Comments 484.3 10 2769.5 $23/2^{-1}$ 2284.4 $21/2^{-1}$ 497.0 10 934.8 $11/2^{+}$ 437.8 $7/2^{+}$ 49/2+ 8189.3 8 1 8694.0 $47/2^{+}$ $R_{\theta} = 0.66$ 7. 504.1 10 D+Q 515.1 5 15 3 12236.4 $63/2^{-}$ 11721.2 $61/2^{-1}$ D+Q $R_{\theta} = 0.76 \ 6.$ 515.6 10 767.6 $11/2^{+}$ 252.02 $7/2^{+}$ $R_{\theta} = 0.71 \ 6.$ 43 6 6655.2 $41/2^{-}$ 6133.8 39/2-D+Q 521.7 5 45/2- $R_{\theta} = 0.84 \ 8.$ 523.1 10 7780.7 7257.6 $43/2^{-}$ D+Q 534.8 10 12858.4 12323.8 541.8 10 2963.9 $23/2^{+}$ 2422.1 $19/2^{+}$ R_θ=1.29 10. Q 22 3 $45/2^{-}$ 7066.9 $43/2^{-}$ D+Q $R_{\theta} = 0.59$ 6. 550.5 5 7617.4 1269.8 550.8 10 $15/2^{-}$ 719.1 $15/2^{-}$ $R_{\theta} = 0.71$ 7. D+Q 555.7 10 $29/2^{+}$ $27/2^{+}$ 2.0 5 3905.2 3349.3 558.4 10 5585.3 $35/2^{-}$ 5026.7 $33/2^{-}$ D+Q $R_{\theta} = 0.62$ 7. 561.5 2 $3.1 \times 10^2 4$ 6477.0 $41/2^{+}$ 5915.5 $39/2^{+}$ D+O $R_{\theta}=0.59$ 6. 518.5 563.5 10 1082.0 $13/2^{+}$ $9/2^{+}$ $(51/2^{-})$ $(49/2^{-})$ $R_{\theta} = 0.46 5.$ 566.8 5 16.29257.4 8690.6 D+Q 574.4 10 1293.6 $17/2^{-}$ 719.1 $15/2^{-}$ D+Q $R_{\theta} = 0.45 \ 6.$ 34 5 $39/2^{-}$ 5793.4 D+Q $R_{\theta} = 0.58 \ 6.$ 580.8 5 6374.1 $37/2^{-}$ $(53/2^{-})$ 582.7 10 91 10489.5 $(55/2^{-})$ 9906.5 33 4 $R_{\theta} = 0.97 \ 9.$ 591.4 5 8955.2 $49/2^{-}$ 8363.6 $47/2^{-}$ D+Q $23/2^+$ $19/2^{+}$ 591.5 10 2822.0 2230.2 602.3 5 26 3 7257.6 $43/2^{-}$ 6655.2 $41/2^{-}$ D+Q $R_{\theta} = 0.82$ 9. 607.4 2 207 24 7084.4 $43/2^{+}$ 6477.0 $41/2^{+}$ D+Q $R_{\theta} = 0.58 \ 6.$ $R_{\theta} = 0.60 \ 6.$ 607.5 5 25 3 8224.9 $47/2^{-}$ 7617.4 $45/2^{-}$ D+Q $15/2^{-}$ $13/2^{-}$ D+Q $R_{\theta} = 0.61 \ 6.$ 607.7 10 1269.8 662.1 608.8^C 10 3559.4 $27/2^{+}$ 2950.7 $25/2^{-}$ D+Q $R_{\theta} = 0.90 \ 10.$ 613.7 10 877.2 $13/2^{-}$ 263.41 $11/2^{-}$ 614.6 10 8690.6 $(49/2^{-})$ 8075.3 $47/2^{-}$ 616.6 2 1000 1335.7 19/2-719.1 $15/2^{-}$ Q $R_{\theta} = 1.46 \ 11.$ 1953.3 $19/2^{-}$ 1335.7 $19/2^{-}$ 617.5 10 934.8 $11/2^{+}$ 619.0 10 1553.7 $15/2^{+}$ 629.9 10 1397.5 $15/2^{+}$ 767.6 $11/2^{+}$ Q $R_{\theta} = 1.34 \ 14.$ 59/2-D+Q 631.5 5 15 2 11721.2 $61/2^{-}$ 11089.7 $R_{\theta} = 0.63$ 7. $R_{\theta} = 1.31 \ 5.$ 631.6 10 1293.6 662.1 $13/2^{-}$ $17/2^{-}$ Q 633.1 5 48 6 11808.4 $(61/2^+)$ 11175.4 $(59/2^+)$ D+Q $R_{\theta}=0.73$ 7. 1522.0 644.6 10 $17/2^{-1}$ 877.2 $13/2^{-}$ 649.3 5 10 2 9906.5 $(53/2^{-})$ 9257.4 $(51/2^{-})$ $23/2^+$ 651.7 10 2882.1 2230.2 $19/2^{+}$ Q $R_{\theta} = 1.37 \ 14.$ 655.1 5 15 2 6789.2 $41/2^{-}$ 6133.8 39/2- $27/2^{+}$ 2822.0 $23/2^{+}$ 656.8 2 139 18 3478.8 Q $R_{\theta} = 1.37 \ 11.$ 669.8 10 4019.1 $29/2^{+}$ 3349.3 $27/2^+$ D+O $R_{\theta} = 0.40 5.$ 114 13 $49/2^{+}$ $R_{\theta} = 0.62$ 7. $670.1\ 2$ 9123.9 $51/2^{+}$ 8453.6 D+Q 2.5×10² 3 671.8 2 3169.0 $25/2^+$ 2497.1 $21/2^{+}$ 81 $61/2^{-}$ 57/2-674.7 10 11721.2 11046.1 $17/2^{+}$ $13/2^{+}$ 1082.0 675.8 10 1757.5 676.5 10 2230.2 $19/2^{+}$ 1553.7 $15/2^{+}$ 27 4 3559.4 $27/2^{+}$ 2882.1 $23/2^{+}$ $R_{\theta} = 1.70 \ 21.$ 677.3 5 0 679.7 10 $23/2^{-}$ $23/2^{-}$ D+Q 2769.5 2089.4 $R_{\theta} = 0.44 \ 5.$ 683.5 10 $19/2^{-}$ $15/2^{-1}$ $R_{\theta} = 1.53 \ 14.$ 1953.3 1269.8 Q 684.6 10 61 9808.9 $(53/2^+)$ 9123.9 $51/2^{+}$ 31 11175.7 $(57/2^{-})$ 10489.5 685.6 10 $(55/2^{-})$ 29/2+ 695.6 10 71 3905.2 3209.8 $25/2^+$ $R_{\theta} = 1.78 \ 21.$ Q 700.9 2 182 21 4608.9 $31/2^{-}$ 3907.9 $27/2^{-}$ $R_{\theta} = 1.74 \ 20.$ Q 91 8694.0 $49/2^{+}$ 7990.9 $47/2^{+}$ 703.4 10 8189.3 $47/2^{+}$ 707.6 10 7481.7 $45/2^{+}$ D+Q $R_{\theta} = 0.59$ 7.

80 Se(48 Ca.5n γ):Nd 2020	Ba12 (continued)
--	-------------------------

				$\gamma(1)$	¹²³ Xe) (con	ntinued)		
E _v †	L.,‡	E:(level)	Iπ	Еe	\mathbf{J}^{π}	Mult. ^b	Comments	
-,	169.22		$\frac{1}{22/2^{+}}$	-j	10/2+	0	D 1 (7 10	
/09./ 2	168 22	2822.0	23/2	2112.2	19/2	Q	$R_{\theta} = 1.6 / 18.$	
/10./ 5	23 4	5337.8	35/2	4627.4	33/21		D 0 (0 7	
712.1 5	14 2	7969.8	45/2	7278.8	43/2	D+Q	$R_{\theta} = 0.69$ /.	
712.2 10	70.10	7990.9	41/2	7278.8	$43/2^{+}$	0	D = 1.52.16	
712.4 5	19 10	5209.8	$\frac{23}{2}$	1207.5	$\frac{21}{2}$	Q	$R_{\theta} = 1.35 \ I0.$	
714.7 10	34.5	6780.2	19/2	6070.1	13/2	Q	$R_{\theta} = 1.50 \ IJ.$ $P_{z} = 1.26 \ IA$	
719.2 5	54 5	4880.0	+1/2 33/2+	4155.6	$\frac{31/2}{31/2^+}$	Q	R_{θ} -1.20 14.	
724.0 10	01	2062.1	$\frac{33/2}{21/2^{-}}$	1335 7	$\frac{31/2}{10/2^{-}}$			
728.9.2	170.20	5337.8	$\frac{21}{2}$ 35/2 ⁻	4608.9	$\frac{19/2}{31/2^{-}}$	0	$R_{0} = 1.40.15$	
732 7 10	170 20	2822.0	$\frac{33/2}{23/2^+}$	2089.4	$\frac{31/2}{23/2^{-}}$	Q	$R_{\theta} = 1.40$ 15.	
733 6 10		2963.9	$\frac{23}{2}$	2002.4	$\frac{23}{2}$ 19/2 ⁺	0	$R_0 = 1.69.24$	
734.3 2	123 16	4213.1	$\frac{23}{2}^{+}$	3478.8	$27/2^+$	õ	$R_0 = 1.30 \ I_0$	
735.7 10	125 10	1397.5	$15/2^+$	662.1	$13/2^{-}$	×	1.00 1.00	
737.3 5	55 7	8955.2	$49/2^{-}$	8218.2	$47/2^{-}$	D+O	$R_{\rho}=0.82$ 11.	
738.9.2	2.1×10^2 3	3907.9	27/2-	3169.0	$25/2^+$	D	$R_{a}=0.77$ 13	
739.6.2	119 75	2497.1	$21/2^+$	1757.5	$17/2^+$	0	$R_{a}=1.33$ 17.	
743.0 5	71.9	5026.7	$\frac{23}{2}$	4283.6	$29/2^{-}$	ò	$R_{\theta} = 1.71 \ I9.$	
753.8.2	$8.8 \times 10^2 8$	2089.4	23/2-	1335.7	19/2-	õ	$R_{0}=1.43.15$	
753.8 10	0.07110 0	5687.3	$35/2^{-}$	4933.9	$(33/2^{-})$	×		
755.1 10		4608.9	$31/2^{-}$	3853.7	$(27/2^{-})$			
755.3 10		10890.5	$57/2^{-}$	10135.1	55/2-			
757.0 5	48 6	5793.4	37/2-	5036.2	$35/2^{+}$			
762.7 10		2284.4	$21/2^{-}$	1522.0	$17/2^{-}$	Q	$R_{\theta} = 1.38 \ 17.$	
763.9 10		2991.2	$27/2^{-}$	2227.3	$(23/2^{-})$		0	
765.9 5	31 4	4325.3	$31/2^{+}$	3559.4	$27/2^{+}$	Q	R_{θ} =1.35 24.	
766.5 5	51 6	5793.4	37/2-	5026.7	33/2-	Q	$R_{\theta} = 1.70 \ 19.$	
768.5 10		2062.1	$21/2^{-}$	1293.6	$17/2^{-}$	Q	R_{θ} =1.56 17.	
770.3 5	62 8	2882.1	$23/2^{+}$	2112.2	19/2+	Q	$R_{\theta} = 1.41 \ 16.$	
777.7 10		6464.9	39/2-	5687.3	$35/2^{-}$	Q	$R_{\theta} = 1.20 \ 15.$	
778.3 2	127 14	10135.1	55/2-	9356.8	53/2-	D+Q	$R_{\theta} = 0.65 \ 8.$	
780.2 5	30 5	9904.2		9123.9	$51/2^{+}$			
788.6 10		6374.1	39/2-	5585.3	35/2-	Q	$R_{\theta} = 1.26 \ 16.$	
788.7 5	26 4	4608.9	31/2-	3820.2	29/2+	D	$R_{\theta} = 0.95 \ 18.$	
796.0 2	132 15	6133.8	39/2-	5337.8	35/2-	Q	$R_{\theta} = 1.40 \ I5.$	
802.8 10	0 -	1522.0	17/2	719.1	15/2			
806.3 ^{^w} 2	4.4×10^{20} 5	4155.6	$31/2^{+}$	3349.3	$27/2^{+}$			
807.4 ^{@&} 10	а	4627.4	$33/2^{+}$	3820.2	$29/2^{+}$			
816.1 2	2.6×10 ² 3	2769.5	$23/2^{-}$	1953.3	$19/2^{-}$	Q	$R_{\theta} = 1.31 \ 15.$	
818.6 10		1082.0	$13/2^{+}$	263.41	$11/2^{-}$			
819.4 10		2112.2	$19/2^{+}$	1293.6	$17/2^{-}$			
819.4 5	18 <i>3</i>	4724.6	$33/2^{+}$	3905.2	$29/2^{+}$	Q	$R_{\theta} = 1.88 \ 27.$	
820.0 10		2882.1	$23/2^{+}$	2062.1	$21/2^{-}$			
830.6 5	19 2	4933.9	$(33/2^{-})$	4103.4	29/2-			
830.6 5	30 <i>3</i>	11721.2	$61/2^{-}$	10890.5	57/2-	Q	$R_{\theta} = 1.54 \ 19.$	
848.7 10	91	5915.5	39/2+	5066.5	35/2+			
850.5 5	40 8	4019.1	$29/2^+$	3169.0	$25/2^+$	Q	$R_{\theta} = 1.31 \ 18.$	
853.3 2	105 13	5066.5	35/2+	4213.1	31/2+	Q	$R_{\theta} = 1.46 \ 19.$	
858.6 10		5213.3	$(35/2^{-})$	4354.9	$(31/2^{-})$	D		
861.1 10	54.0	2950.7	$25/2^{-}$	2089.4	$\frac{23}{2^{-}}$	D	D 1 (0.24	
801.3.3	54 9	4880.0	33/2 ⁺	4019.1	29/2*	Q	$K_{\theta} = 1.68 \ 24.$	
861.5 5	33 4	6655.2	$41/2^{-}$	5793.4	37/2-	Q	$K_{\theta} = 1.69 \ 21.$	
802.1 10	104.15	3833./ 2152.((21/2)	2991.2	21/2	0	D 1 (0 22	
808.2 Z	134 13	5152.6	23/2	2284.4 4155.6	$\frac{21}{2}$	Q	$\kappa_{\theta} = 1.00 \ 22.$	
0/1.1 10		5026.7	33/2	4133.0	31/2			

$\gamma(^{123}$ Xe) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^b		Comments
875.3 10		2963.9	$23/2^{+}$	2089.4	$23/2^{-}$			
875.8 10		7990.9	$47/2^{+}$	7114.9	$43/2^{+}$			
875.9 2	$4.1 \times 10^2 5$	2965.3	$27/2^{-}$	2089.4	$23/2^{-}$	Q	$R_{\theta} = 1.49 \ 18.$	
879.2 [@] 2	7.3×10 ² <i>a</i> 9	5915.5	39/2+	5036.2	35/2+			
880.8 [@] 10	а	5036.2	$35/2^{+}$	4155.6	$31/2^{+}$			
882.2 5	25 4	5207.4	$35/2^{+}$	4325.3	$31/2^{+}$	0	$R_{\theta}=1.40\ 20.$	
883.7 10		7257.6	$43/2^{-}$	6374.1	39/2-		0	
887.8 10		3853.7	$(27/2^{-})$	2965.3	$27/2^{-}$			
888.6 2	141 17	2950.7	$25/2^{-}$	2062.1	$21/2^{-}$	Q	R_{θ} =1.89 27.	
891.8 2	100 12	5519.3	$37/2^{+}$	4627.4	$33/2^{+}$	Q	$R_{\theta} = 1.29 \ 18.$	
901.9 10		2991.2	27/2-	2089.4	23/2-	Q	$R_{\theta} = 1.84 \ 25.$	
906.4 2	113 14	7990.9	47/2+	7084.4	43/2+	Q	$R_{\theta} = 1.43 \ 18.$	
910.9 5	20.2	11046.1	57/2-	10135.1	55/2-	D+Q	$R_{\theta} = 0.83 \ 12.$	
916.7 2	142 17	3907.9	27/2	2991.2	27/2			
919.2 10	51	/084.4	43/2	6165.1	39/21	0	D 17121	
920.4 10	92	3031.0 7066.0	51/2	4/24.0	33/2" 20/2=	Q	$K_{\theta} = 1./1 \ 21.$	
933.1 3	08 8	/000.9	43/2	0100.8	39/2 27/2+	Q D	$R_{\theta} = 1.48 \ I9.$	
934.2 10	20 /	4285.0	29/2 51/2+	5549.5 8180 3	21/2 17/2+	0	$R_{\theta} = 0.74$ 9. $R_{\phi} = 1.23$ 18	
936 1 10	294	2230.2	$\frac{31/2}{10/2^+}$	1203.6	$\frac{17}{2}$	Q	$R_{\theta} = 1.25 \ 10.$	
939 9 10	4 1	3905.2	$\frac{19/2}{29/2^+}$	2965.3	$\frac{17/2}{27/2}$			
941.0.5	14.2	13432.8	$\frac{27}{2}$	12491.9	$\frac{27}{2}$	0	$R_{a}=1.45.19$	
942.6.2	$3.0 \times 10^2 4$	3907.9	$27/2^{-}$	2965.3	27/2-	× D+O	$R_0 = 1.08 I_2$	
944.3.5	98 12	10068.1	$55/2^+$	9123.9	$51/2^+$	0	$R_{\theta} = 1.53 \ 23.$	
948.9 10		2284.4	$21/2^{-}$	1335.7	$19/2^{-}$	D+O	$R_{\theta} = 1.08 \ 15.$	
950.9 5	86 10	4103.4	$29/2^{-}$	3152.6	$25/2^{-}$	Q	$R_{\theta} = 1.48 \ 22.$	
954.6 5	40 5	11089.7	59/2-	10135.1	55/2-	Q	$R_{\theta} = 1.70 \ 23.$	
957.7 5	15 2	6165.1	39/2+	5207.4	$35/2^+$	Q	$R_{\theta} = 1.48 \ 22.$	
958.1 5	89 11	6477.0	$41/2^{+}$	5519.3	$37/2^{+}$	Q	$R_{\theta} = 1.40 \ 21.$	
960.6 10	a	6070.1	37/2-	5109.4	$33/2^{-}$	Q	$R_{\theta} = 1.62 \ 24.$	
960.8 5	42 ^{<i>a</i>} 6	8218.2	47/2-	7257.6	43/2-			
961.3 10	a	5064.5	$(33/2^{-})$	4103.4	29/2-			
962.5 10	(7)	7617.4	45/2	6655.2	$41/2^{-}$	Q	$R_{\theta} = 1.62 \ 21.$	
965.4 5	65 8	9418.8	53/2' 47/2-	8453.0	49/21	Q	$R_{\theta} = 1.63 \ 21.$	
966./ 10	117 15	8224.9	4//2	1251.0	43/2 25/2+	0	D = 1.54.20	
907.0 2	117 13	0034.1 8453.6	59/2 40/2+	7481 7	55/2 15/2+	Q	$R_{\theta} = 1.34 \ 20.$ $P_{z} = 1.76 \ 23$	
985 0 10	112 15	8955.2	49/2	7969.8	$\frac{45}{2}$	Q	$R_{\theta} = 1.70 \ 25.$	
985.8.2	2.8×10^2 3	3951.1	$\frac{1}{2}$	2965.3	-5/2 27/2-	0	$R_{0} = 1.52 I_{5}$	
1000 1 5	16.2	6418.2	$39/2^{-}$	5418.0	$\frac{27}{2}$	õ	$R_{\theta} = 1.32 \ 15.$ $R_{\sigma} = 1.34 \ 16$	
1004.7 2	102 12	7481.7	$45/2^+$	6477.0	$41/2^+$	õ	$R_{\theta} = 1.59 \ 22.$	
$1005.3^{\textcircled{0}}{2}$	118 ^a 15	6048.5	$(37/2^{-})$	5043.2	$(33/2^{-})$	×		
$1005.4^{\textcircled{0}}$ 10	a	3956.0	$(29/2^{-})$	2950.7	25/2-			
1005.7 5	35 4	6070.1	37/2-	5064.5	$(33/2^{-})$			
1008.4 5	54 7	8075.3	$47/2^{-}$	7066.9	43/2-	Q	$R_{\theta} = 1.32 \ 20.$	
1027.3 10		6070.1	37/2-	5043.2	$(33/2^{-})$			
1029.6 5	21 4	11097.6	57/2+	10068.1	$55/2^+$	D+Q	$R_{\theta} = 0.58 \ 10.$	
1032.8 10	71	6683.8	$41/2^{+}$	5651.0	$37/2^+$	Q	$R_{\theta} = 1.26 \ 13.$	
1035.6 2	129 14	6045.8	39/2-	5010.2	35/2-	Q	$R_{\theta} = 1.37 \ 15.$	
1038.3 10	10.0	1757.5	$17/2^+$	719.1	$15/2^{-}$	D	$R_{\theta} = 0.85 \ 11.$	
1048.8 5	12 2	12146.4	$61/2^+$	11097.6	$57/2^{+}$	Q	$R_{\theta} = 1.58 \ 22.$	
1050.2.5	30 4	/084.4	45/2'	0034.1	59/2' 21/2-	Q	$\kappa_{\theta} = 1.51 \ 21.$	
1059.1 2	2.4×10^{20} 3	5010.2	35/2-	3951.1	$\frac{31}{2^{-}}$	Q	$K_{\theta} = 1.85 \ 24.$	
1000.9 10		/106.9	43/2	6045.8	59/2	Q	$\kappa_{\theta} = 1.55 \ 20.$	

$\gamma(^{123}$ Xe) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult. ^b	Comments
1062.7 10		3152.6	$25/2^{-}$	2089.4	23/2-		
1064.7 5	15 <i>3</i>	11132.7		10068.1	$55/2^{+}$		
1073.2 5	18 <i>3</i>	8690.6	$(49/2^{-})$	7617.4	45/2-		
1079.6 2	$4.1 \times 10^2 5$	3169.0	$25/2^+$	2089.4	$23/2^{-}$	D	$R_{\theta} = 0.80 \ 9.$
1080.7 5	58 8	7114.9	$43/2^{+}$	6034.1	$39/2^+$	Q	$R_{\theta} = 1.29 \ 22.$
1084.5 5	47 6	3853.7	$(27/2^{-})$	2769.5	23/2-		
1087.3 5	34 5	5043.2	$(33/2^{-})$	3956.0	$(29/2^{-})$		
1105.4 10		8189.3	$47/2^{+}$	7084.4	$43/2^{+}$	Q	$R_{\theta} = 1.66 \ 28.$
1107.3 5	41 6	11175.4	$(59/2^+)$	10068.1	$55/2^{+}$		
1111.4 5	76 8	8218.2	47/2-	7106.9	$43/2^{-}$	Q	$R_{\theta} = 1.76 \ 23.$
1113.7 5	10 2	7278.8	43/2+	6165.1	39/2+	Q	$R_{\theta} = 1.22 \ 22.$
1115.8 10	71	14554.2	$(69/2^{-})$	13438.4	65/2-		
1118.1 5	21 3	8224.9	47/2-	7106.9	43/2-		
1120.8 5	34 4	3209.8	25/2+	2089.4	$23/2^{-}$		
1123.7 10		7807.5	45/2+	6683.8	41/2+	Q	$R_{\theta} = 1.8734.$
1126.9° <i>10</i>	31	12216.2?	10/2+	11089.7	59/2-	P	D
1128.1 10	10.2	2422.1	19/2+	1293.6	$17/2^{-}$	D	$R_{\theta} = 0.80 \ 9.$
1133.3 5	18 2	9123.9	51/21	/990.9	4 //2	Q	$R_{\theta} = 1.67 21.$
113/.1 10	147 19	12858.4	27/2-	2760.5	$\frac{61}{2}$	0	$P_{-1} = -1.60.21$
1138.5 2	14/10	3907.9	21/2	2709.5	25/2	Q	$K_{\theta} = 1.00 \ 21.$
1141.8° <i>10</i>	8 ⁴ 2	10708.1	$(55/2^+)$	9566.3	$(51/2^+)$		
1143.0 [@] 10	a	11851.1	$(59/2^+)$	10708.1	$(55/2^+)$		
1146.5 10	8 1	12236.4	$63/2^{-}$	11089.7	59/2-	Q	$R_{\theta} = 1.86 \ 27.$
1152.0 10		9376.9	$(51/2^{-})$	8224.9	$47/2^{-}$		
1153.2 10		5109.4	33/2-	3956.0	$(29/2^{-})$		
1156.4 10	60.0	7840.2	21/2+	6683.8	$41/2^+$		
1160.9 5	68.9	2497.1	$21/2^+$	1335.7	19/2-		
1162.9 5	14 3	12295.6		11132.7	(17/2+)		
1166.9 5	104 2	9465.2	10 /0±	8298.3	$(4^{\prime})/2^{\prime}$	0	D 1 45 10
1168.8 5	85 10	7084.4	43/21	5915.5	39/21	Q	$R_{\theta} = 1.47$ 19.
1169.2 10	2.1	10634.4	(47/2+)	9405.2	42/2+		
1109.8 10	51	8448.0	$(47/2^{-1})$	1218.8	45/2		
1174.5 10	11.2	6933.2 10507.0	$(57/2^+)$	0/18.8	43/2 52/2+		
1170.2 5	11 Z 58 7	7060.8	(57/2)	9410.0 6780 2	$\frac{33}{2}$	0	$P_{-1} = 1.22 I_{2}$
1180.0 5	26 1	0257 4	$(51/2^{-})$	8075.2	41/2	Q	$K_{\theta} = 1.22 \ 12.$
1183.4.5	20 4	8298 3	$(31/2^{+})$ $(47/2^{+})$	7114.9	$\frac{47}{2}$		
1194.4 10	20 7	8975 1	$(49/2^{-})$	7780 7	$45/2^{-}$		
1195.0.5	11.2	10613.8	$57/2^+$	9418.8	$53/2^+$	0	$R_{a}=1.47.22$
1196.0 10	61	13432.8	$67/2^{-}$	12236.4	$63/2^{-}$	×	
1197.4 10	01	10574.3	$(55/2^{-})$	9376.9	$(51/2^{-})$		
1202.0 10		13438.4	65/2-	12236.4	63/2-	D+O	$R_{\theta} = 0.28 \ 8.$
1204.6 5	35 4	9422.8	$51/2^{-}$	8218.2	$47/2^{-}$	0	$R_{\theta} = 1.23 \ I8.$
1211.3 10		11808.4	$(61/2^+)$	10597.0	$(57/2^+)$		
1212.7 5	17 2	8694.0	$49/2^{+}$	7481.7	$45/2^{+}$		
1215.7 5	13 2	9906.5	$(53/2^{-})$	8690.6	$(49/2^{-})$		
1216.2 5	16 2	12039.9	$61/2^+$	10823.7	57/2+	Q	$R_{\theta} = 1.73 \ 29.$
1222.1 ^c 10		13438.4	$65/2^{-}$	12216.2?			
1225.5 10		5328.9	$(33/2^{-})$	4103.4	29/2-		
1228.3 10		11132.7		9904.2			
1232.0 5	14 <i>3</i>	10489.5	$(55/2^{-})$	9257.4	$(51/2^{-})$		
1234.2 10		12323.8		11089.7	59/2-		
1251.9 10	~	6464.9	39/2-	5213.3	$(35/2^{-})$		
1256.6 5	29 ^{<i>a</i>} 4	8363.6	47/2-	7106.9	$43/2^{-}$		

 $\gamma(^{123}\text{Xe})$ (continued)

Mult.^b E_{γ}^{\dagger} Iγ[‡] E_i (level) \mathbf{J}_i^{π} \mathbf{E}_{f} J_{f}^{π} Comments 10679.8 9422.8 51/2-1257.0 10 55/2-Q $R_{\theta} = 1.26 \ 20.$ 1262.5 10 5213.3 $(35/2^{-})$ 3951.1 31/2-1264.0^C 10 11898.0? 10634.4 1268.0 10 92 9566.3 $(51/2^+)$ 8298.3 (47/2+) 1269.9 10 61 11175.7 $(57/2^{-})$ 9906.5 (53/2-) $57/2^+$ 1288.5 10 61 9808.9 (53/2+) 11097.6 8298.3 (47/2+) 1292.4 10 9590.7 1311.6 5 20.3 14484.7 13173.1 (65/2+) 1318.9 5 14 2 11998.7 $(59/2^{-})$ 10679.8 55/2 10 2 $R_{\theta} = 0.24$ 7. 1327.2 5 14760.0 $69/2^{-}$ 13432.8 67/2-D+Q 1329.5 10 5285.8 $(33/2^{-})$ 3956.0 (29/2-) 13173.1 (65/2+) 1348.2 5 27 3 14521.3 1352.4 10 2688.6 $21/2^{+}$ 1335.7 19/2-1355.3 5 11 2 9808.9 $(53/2^+)$ 8453.6 49/2+ $(65/2^+)$ 1364.7 5 58 6 13173.1 11808.4 (61/2+) 11440.5 1372.4 10 10068.1 55/2+ 1389.9 10 4354.9 $(31/2^{-})$ 2965.3 27/2-1402.3 5 14 2 12491.9 $63/2^{-}$ 11089.7 59/2- $R_{\theta} = 1.78 \ 28.$ Q 33 5 $57/2^{+}$ 9418.8 53/2+ 1404.9 5 10823.7 Q $R_{\theta} = 1.84 \ 30.$ 11 2 39/2-1408.2 5 6418.2 5010.2 35/2-1454.7 5 31 7 6464.9 $39/2^{-}$ 5010.2 35/2-Q $R_{\theta} = 1.76 \ 18.$ 1466.6 10 5418.0 $35/2^{-}$ 3951.1 31/2-1480.5 10 72 12921.0 11440.5 1534.0 10 92 10890.5 $57/2^{-}$ 9356.8 53/2-1764.1 10 2089.4 23/2-3853.7 $(27/2^{-})$ 1818.9 5 73 15 3907.9 $27/2^{-}$ 2089.4 23/2-

[†] From 2020Ba12. Uncertainties are not explicitly given by 2020Ba12 and assigned by the evaluator as follows based on authors' general statement that the uncertainty lies between 0.2 and 1.0 keV depending on intensity: $\Delta E\gamma = 0.2$ keV for $I\gamma \ge 100$, 0.5 keV for $I\gamma \ge 10$, and 1.0 keV for the rest, unless otherwise noted.

^{\ddagger} Relative to I γ =1000 for 616.6 γ from 1335 level (2020Ba12).

[#] From Adopted Gammas; not seen in 2020Ba12. Original values quoted by 2020Ba12 are taken by the authors from 1981Lu01 in $({}^{3}\text{He},3n\gamma)$.

^(a) Measurement of angular distribution ratio was not possible due to the presence of gamma rays of overlapping energy (2020Ba12). [&] The energy of gamma rays could not be measured exactly due to the presence of multiple gamma rays of similar energy

(2020Ba12).

^a The quoted intensity is the combined value for gamma rays of overlapping energies (2020Ba12).

^{*b*} From 2020Ba12 based on measured γ angular intensity ratios R_{θ} given under comments. Expected R_{θ} values are ≈ 0.6 and 1.4 for stretched dipole and stretched quadrupole transitions, respectively. Original assignments are given by 2020Ba12 as M1+E2, E1 and E2 with definite electric or magnetic natures, but have been replaced by the evaluator with D+Q, D and Q, respectively, due to lack of experimental evidence from this work for the electric or magnetic natures.

^c Placement of transition in the level scheme is uncertain.

<u>Level Scheme</u> Intensities: Relative I_{γ}

¹²³₅₄Xe₆₉

 $\begin{array}{c|c} & \mathbf{I}_{\gamma} < \ 2\% \times \mathbf{I}_{\gamma}^{max} \\ \hline & \mathbf{I}_{\gamma} < \ 10\% \times \mathbf{I}_{\gamma}^{max} \\ \hline & \mathbf{I}_{\gamma} > \ 10\% \times \mathbf{I}_{\gamma}^{max} \end{array}$

Legend

¹²³₅₄Xe₆₉

¹²³₅₄Xe₆₉

 $\frac{\text{Level Scheme (continued)}}{\text{Intensities: Relative I}_{\gamma}}$

Legend

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$

Level Scheme (continued)

Intensities: Relative $I_{\boldsymbol{\gamma}}$

23/2-

19/2-

15/2

80Se(⁴⁸Ca,5nγ):Nd 2020Ba12 (continued)

