¹²³Ι ε decay (13.2230 h) 1976Wa13,2012Ko47

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021

Parent: ¹²³I: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=13.2230$ h *19*; $Q(\varepsilon)=1228$ *3*; $\%\varepsilon+\%\beta^+$ decay=100.0

¹²³I-J^{π},T_{1/2}: From Adopted Levels of ¹²³I.

¹²³I-Q(ε): From 2021Wa16.

- 2012Ko47: radionuclide ¹²³I was produced at the IPEN Cyclone-30 cyclotron at the Nuclear Metrology Laboratory (LMN) at the Nuclear and Energy Research Institute (IPEN), by means of ¹²⁴Xe(p,2n)¹²³Cs reaction, followed by ¹²³Cs decay. γ and X rays were detected by NaI(Tl) and HPGe detectors and electrons were detected by a gas-flow or pressured 4π proportional counter in $4\pi\beta$ - γ coincidence systems. Measured E γ , I γ , E(X-ray), I(X-ray), E β , I β . Deduced γ -ray emission probabilities, 159 γ conversion coefficient from the experimental extrapolation curve. Comparisons with available data.
- 1976Wa13: ¹²³I source was produced via ¹²³Te(p,n) on isotopically enriched targets at Lawrence Livermore Laboratory. γ rays were detected with ordinary and Compton-suppressed Ge(Li) spectrometers. Measured E γ , I γ . Deduced levels, J, π , β branching

ratios, log ft. Comparisons with theoretical calculations. Systematics of neighboring Te isotopes.

- 1979Sc13: ¹²³I activity was obtained from the decay of ¹²³Xe produced by proton bombardment of iodine. γ rays were detected with a NaI detector. Measured E γ , $\gamma(\theta,t)$. Deduced levels, J, π , γ -ray mixing ratios. Deduced magnetic moment of ¹²³I g.s. using the technique of nuclear magnetic resonance of oriented nuclei (NMR/ON).
- 1970Sp03: source of ¹²³I was produced by high-energy spallation of 3 GeV proton from the Princeton-Pennsylvania Accelerator on a natural lanthanum target. γ rays were detected with four Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels. Comparisons with available data.
- 1968Ra11: source of ¹²³I was produced by ¹²¹Sb(⁴He,2n) with 30 MeV ⁴He beam from the MIT cyclotron on Sb metal (98.4% in ¹²¹Sb). γ rays were detected with a Ge(Li) detector and a NaI(Tl) crystal. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, J, π , β branching ratios, log *ft*. Comparisons with theoretical calculations. Systematics of neighboring Te isotopes.

1969Se09: ¹²³I source was produced via Te(p,xn) with 80 MeV proton beam from the synchrocyclotron at Orsay. γ rays were detected with a Ge(Li) detector and a NaI detector. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$. Deduced γ -ray mixing ratios. See 1967Se05 for deduced levels, J, π , β -decay branching ratios, log *ft*.

Others:

Iy: 1960Gu02, 1986AgZW, 1986Fl03, 1987Ja13, 1990Ma24.

Parent T_{1/2}: 2012Re25, 2018Bo02, 2004Da05, 1973Ka45.

¹²³Te Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	$1/2^{+}$		
159.00 <i>3</i>	3/2+	196 ps 10	
247.5	$11/2^{-}$	119.2 d <i>3</i>	Additional information 1.
			E(level): rounded value from Adopted Levels.
440.01 4	$3/2^{+}$	22 ps 4	J^{π} : spin=3/2 from $\gamma\gamma(\theta)$ in 1969Se09.
489.73 8	$7/2^{+}$	30.7 ns 4	
505.34 4	$5/2^{+}$	13 ps 3	J^{π} : spin=5/2 from $\gamma\gamma(\theta)$ in 1969Se09.
532.82 11	$(7/2^{-})$		
599.57 15	$1/2^{+}$		
687.97 <i>4</i>	$3/2^{+}$		J ^{π} : spin=3/2 from $\gamma\gamma(\theta)$ in 1969Se09; 5/2 from $\gamma(\theta)$ anisotropy in 1979Sc13.
697.53 <i>5</i>	$(7/2)^+$		J^{π} : spin=7/2 from $\gamma\gamma(\theta)$ in 1969Se09.
769.27 14			
783.61 4	3/2+	52 fs +33–21	J^{π} : spin=(3/2,5/2) from $\gamma\gamma(\theta)$ in 1969Se09; 5/2 ruled out by $\gamma(\theta)$ anisotropy in 1979Sc13.
894.77 8	$3/2^+, 5/2^+$	45 fs +24-14	
996.07 12	$(5/2)^{-1}$		
1036.65 12	$3/2^{+}$	43 fs +16-12	
1068.16 7	3/2+,5/2+		

Continued on next page (footnotes at end of table)

¹²³Ι ε decay (13.2230 h) 1976Wa13,2012Ko47 (continued)

¹²³Te Levels (continued)

[†] From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 0.3$ keV where not given.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
(160 3)	1068.16	0.0079 8	7.55 5	0.0079 8	εK=0.8057 14; εL=0.1522 11; εM+=0.0421 4
(191 3)	1036.65	0.0028 11	8.2 2	0.0028 11	εK=0.8166 9; εL=0.1439 7; εM+=0.03946 21
(232 3)	996.07	0.0036 5	8.3 1	0.0036 5	εK=0.8256 6; εL=0.1371 4; εM+=0.03732 13
(333 3)	894.77	0.074 3	7.31 2	0.074 3	εK=0.8373 3; εL=0.12818 18; εM+=0.03453 6
(444 3)	783.61	0.150 4	7.27 2	0.150 4	εK=0.8434 2; εL=0.1235 1; εM+=0.03307 3
(459 3)	769.27	0.0037 7	8.9 <i>1</i>	0.0037 7	εK=0.8440 2; εL=0.12306 9; εM+=0.03294 3
(530 3)	697.53	0.406 13	7.00 2	0.406 13	εK=0.8463; εL=0.12130 7; εM+=0.03239 2
(540 3)	687.97	1.51 5	6.45 2	1.51 5	εK=0.8466; εL=0.12110 6; εM+=0.03233 2
(695 3)	532.82	0.0044 5	9.21 5	0.0044 5	εK=0.8497; εL=0.11871 4; εM+=0.03159 2
(723 3)	505.34	0.405 11	7.28 1	0.405 11	εK=0.8501; εL=0.11840 4; εM+=0.03149 1
(738 3)	489.73	0.0026 14	9.5 <i>3</i>	0.0026 14	εK=0.8503; εL=0.11824 4; εM+=0.03144 1
(788 3)	440.01	0.424 13	7.34 2	0.424 13	εK=0.8510; εL=0.11775 3; εM+=0.031290 9
					IE: 0.015 <i>16</i> with a 95% confidence level from a direct measurement by 1990Ma24.
(1069 3)	159.00	97.0 5	5.255 4	97.0 5	εK=0.8534; εL=0.11590 2; εM+=0.030717 5

[†] From γ +ce intensity balance at each level. [‡] Absolute intensity per 100 decays.

Iy normalization: From $\Sigma I(\gamma + ce \text{ to g.s.} + 247.5 \text{ levels}) = 100$. No direct ε decay to g.s. and 247.5 level is expected.

ω

E_{γ} ‡	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
159.00 5	100	159.00	3/2+	0.0 1/2+	M1+E2	+0.079 11	0.187	%Iγ=83.60 19 $\alpha(K)=0.1611 23; \alpha(L)=0.0209 3; \alpha(M)=0.00417 6$ $\alpha(N)=0.000824 12; \alpha(O)=8.91\times10^{-5} 13$ B(M1)(W.u.)=0.0234 11; B(E2)(W.u.)=2.5 5 E _γ : weighted average of 159.1 1 (1968Ra11), 159.0 3 (1970Sp03), and 158.97 5 (1976Wa13). Other: 159 1 (1967Se05). $\delta: 0.18 +8-14$ from $\alpha(exp)=0.1905 32$ (2012Ko47), using the BrlccMixing program.
174.2 3	0.0010 3	1068.16	3/2+,5/2+	894.77 3/2+,5/2+	[M1,E2]		0.19 5	%1 γ =0.0008 3 $\alpha(K)$ =0.16 4; $\alpha(L)$ =0.028 13; $\alpha(M)$ =0.006 3 $\alpha(N)$ =0.0011 5; $\alpha(O)$ =0.00011 4 I γ : weighted average of 0.0010 3 (1976Wa13) and 0.0012 6 (2012Ko47).
182.62 <i>6</i>	0.0156 7	687.97	3/2+	505.34 5/2+	[M1,E2]		0.17 4	 %Iγ=0.0130 6 α(K)=0.14 3; α(L)=0.024 10; α(M)=0.0048 21 α(N)=0.0009 4; α(O)=9.E-5 3 E_γ: weighted average of 183.7 10 (1968Ra11), 183.0 7 (1970Sp03), and 182.61 6 (1976Wa13). Other: 183 1 (1967Se05). I_γ: weighted average of 0.03 2 (1968Ra11), 0.03 1 (1970Sp03), 0.0155 7 (1976Wa13), and 0.018 7 (2012Ko47). Other: 0.026 (1967Se05). %I_γ=0.00050 17
192.18 7	0.0212 13	697.53	(7/2)+	505.34 5/2+	[M1,E2]		0.14 3	%1 γ =0.0177 11 α (K)=0.0177 11 α (K)=0.117 21; α (L)=0.020 8; α (M)=0.0040 16 α (N)=0.0008 3; α (O)=7.6×10 ⁻⁵ 24 E _{γ} : weighted average of 192.7 10 (1968Ra11), 193 1 (1970Sp03), and 192.17 7 (1976Wa13). Other: 192 1 (1967Se05). I _{γ} : weighted average of 0.03 2 (1968Ra11), 0.03 2 (1970Sp03), 0.0238 11 (1976Wa13), and 0.0194 9 (2012Ko47). Other: 0.023 (1967Se05).
197.23 [#]	0.0004 2	894.77	3/2+,5/2+	697.53 (7/2) ⁺	[M1,E2]		0.13 3	%I γ =0.00033 17 α (K)=0.108 19; α (L)=0.018 7; α (M)=0.0037 14 α (N)=0.0007 3; α (O)=7.0×10 ⁻⁵ 21
198.23	0.004 1	687.97	3/2+	489.73 7/2+	[E2]		0.1545	%Iγ=0.0033 9 α(K)=0.1242 18; $α$ (L)=0.0243 4; $α$ (M)=0.00497 7 α(N)=0.000952 14; $α$ (O)=8.92×10 ⁻⁵ 13 I _γ : other: 0.003 5 for 198.2γ+197.2γ (2012Ko47).

				¹²³ I	¹²³ Ι ε decay (13.2230 h)) 1976Wa13,20 1	2Ko47 (con	tinued)	
γ ⁽¹²³ Te) (continued)										
${\rm E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments	
206.80 [#]	0.004 1	894.77	3/2+,5/2+	687.97	3/2+	[M1,E2]		0.112 22	%I γ =0.0033 9 α (K)=0.093 15; α (L)=0.015 6; α (M)=0.0031 11 α (N)=0.00060 21; α (O)=6.0×10 ⁻⁵ 17	
207.80 [#]	0.0013 4	697.53	(7/2)+	489.73	7/2+	[M1,E2]		0.111 <i>21</i>	%I γ =0.0011 4 $\alpha(K)$ =0.092 15; $\alpha(L)$ =0.015 6; $\alpha(M)$ =0.0031 11 $\alpha(N)$ =0.00059 20; $\alpha(O)$ =5.9×10 ⁻⁵ 17 L: other: 0.0046 5 for 207 8 γ +206 8 γ (2012Ko47)	
247.97 5	0.0829 <i>18</i>	687.97	3/2+	440.01	3/2+	(M1+E2)		0.064 8	% Iy=0.0693 16 α(K)=0.054 5; $α(L)$ =0.0083 21; $α(M)$ =0.0017 5; α(N+)=0.00039 10 E _γ : weighted average of 248.3 5 (1968Ra11), 248.4 5 (1970Sp03), and 247.96 5 (1976Wa13). Other: 248 1 (1967Se05). I _γ : weighted average of 0.08 1 (1968Ra11), 0.07 2 (1970Sp03), 0.085 3 (1976Wa13), and 0.0824 18 (2012Ko47). Other: 0.070 (1967Se05). δ: -0.55 to -0.14, or -2.1 to -1.0 from $δ^2/(1+δ^2)$ =0.02 to 0.23 or 0.48 to 0.81 ($δ$ <0), respectively, from $γ(θ)$ anisotropy in 1970Se13, with I(688)=5/2	
257.51 15	0.0018 5	697.53	(7/2)+	440.01	3/2+	[E2]		0.0637	anisotropy in 19/30(15), with $J(000)=3/2$. %Iy=0.0015 5 $\alpha(K)=0.0525 \ 8; \ \alpha(L)=0.00902 \ 13; \ \alpha(M)=0.00183 \ 3$ $\alpha(N)=0.000353 \ 5; \ \alpha(O)=3.43\times10^{-5} \ 5$ I _γ : other: %Iy=0.00016 4 in Table 3 of 2012Ko47 could be a misprint. %Iy=0.0000 5	
278.36 12	0.0011 5	783.61	3/2+	505.34	5/2+	[M1,E2]		0.045 4	$%I_{\gamma} = 0.0009 5$ $%I_{\gamma} = 0.0023 5$ $\alpha(K) = 0.038 3; \alpha(L) = 0.0057 12; \alpha(M) = 0.00114 24$ $\alpha(N) = 0.00022 5; \alpha(O) = 2.3 \times 10^{-5} 4$	
281.03 5	0.086 3	440.01	3/2+	159.00	3/2+	M1+E2	-0.24 ^{&} +10-14	0.0409 8	%Iγ=0.072 3 $\alpha(K)=0.0352$ 6; $\alpha(L)=0.00454$ 17; $\alpha(M)=0.00091$ 4 $\alpha(N)=0.000179$ 7; $\alpha(O)=1.93\times10^{-5}$ 6 E _y : others: 281.0 5 (1968Ra11), 281.3 5 (1970Sp03), 282 1 (1967Se05). Other: 282 1 (1967Se05), 275 10 (1960Gu02). I _y : weighted average of 0.08 1 (1968Ra11), 0.08 3 (1970Sp03), 0.095 3 (1976Wa13), and 0.0841 16 (2012Ko47). Other: 0.053 (1967Se05), 0.14 3 (1960Gu02). δ : from A ₂ =-0.26 3 of 281 _Y -159 _Y (θ) (1969Se09), also giving other possible δ =-1.9 5 which is less likely since it would require a much larger B(E2)(W.u.). Others:	

4

 $^{123}_{52}$ Te₇₁-4

¹²³ Ι ε decay (13.						ay (13.223	0 h) 1976	Va13,2012I	Ko47 (continued)			
	γ ⁽¹²³ Te) (continued)											
Eγ‡	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult.@	$\delta^{@}$	α^{\dagger}	Comments			
285.32 <i>11</i> 295.19 [#]	0.0051 <i>5</i> 0.0019	532.82 894.77	(7/2 ⁻) 3/2 ⁺ ,5/2 ⁺	247.5 599.57	11/2 ⁻ 1/2 ⁺				-0.08 to 0, or +3.4 to +4.9 from $\delta^2/(1+\delta^2) < 0.007$ ($\delta < 0$) or 0.92 to 0.96 ($\delta > 0$), respectively, from $\gamma(\theta)$ anisotropy in 1979Sc13. %I γ =0.0043 5 %I γ =0.001588 4			
329.38 <i>17</i> 330.70 8	0.0031 7 0.0139 7	769.27 489.73	7/2+	440.01 159.00	3/2+ 3/2+	[E2]		0.0282	E _γ ,I _γ : From author's FIG.4; not given in table 2 (1976Wa13). Other: I _γ <0.00084 (2012Ko47). %I _γ =0.0026 6 %I _γ =0.0116 6 α (K)=0.0236 4; α (L)=0.00370 6; α (M)=0.000748 11 α (N)=0.0001450 21: α (O)=1.447×10 ⁻⁵ 21			
343.73 14	0.0051 5	783.61	3/2 ⁺	440.01	$3/2^+$	M1+E2	0.078 8	0.0226	I_{γ} : other: 0.0149 6 for 330.7 γ +329.4 γ (2012Ko47). % I_{γ} =0.0043 5			
340.30 5	0.144 5	303.34	5/2*	139.00	5/2"	MI+E2	+0.07** 8	0.0230	α(K)=0.0204 3; α(L)=0.00257 4; α(M)=0.000511 8 α(N)=0.0001012 15; α(O)=1.102×10-5 16 Eγ: weighted average of 346.6 5 (1968Ra11), 347.0 5 (1970Sp03), and 346.35 5 (1976Wa13). Others: 346 1 (1967Se05), 340 10 (1960Gu02). Iγ: weighted average of 0.16 3 (1960Gu02), 0.12 2 (1968Ra11), 0.11 3 (1970Sp03), 0.151 5 (1976Wa13), and 0.142 3 (2012Ko47). Other: 0.087 (1967Se05). δ: from A2=+0.006 30 of 346γ-159γ(θ) in 1969Se09, also giving other possible δ=+3.4 +13-8 which is less likely since it would require a much larger B(E2)(W.u.). Others: +0.20 to +0.29 from δ2/(1+δ2)=0.04 to 0.08 (δ>0) from γ(θ) anisotropy in 1979Sc13, with J(688)=5/2.			
405.02 13	0.0032 4	894.77	3/2+,5/2+	489.73	7/2+				%I γ =0.0027 4 I $_{\gamma}$: weighted average of 0.0035 7 (1976Wa13) and 0.0031 4 (2012Ko47).			
437.5 <i>3</i> 440.02 <i>5</i>	0.0009 9 0.464 12	1036.65 440.01	3/2+ 3/2+	599.57 0.0	1/2 ⁺ 1/2 ⁺	M1+E2	-2.1 1	0.01199	% i_{γ} =0.0008 8 % i_{γ} =0.388 10 α(K)=0.01021 15; α(L)=0.001432 20; α(M)=0.000287 4 α(N)=5.62×10 ⁻⁵ 8; α(O)=5.83×10 ⁻⁶ 9 E _γ : weighted average of 440.4 5 (1968Ra11), 440.2 4 (1970Sp03), and 440.02 5 (1976Wa13). Others: 440 1 (1967Se05), 439.2 (1969Se09), 440.0 (1987Ja13), 435 10 (1960Gu02). I _γ : weighted average of 0.42 2 (1968Ra11), 0.42 8 (1970Sp03), 0.514 17 (1976Wa13), 0.464 9 (2012Ko47), 0.450 15 (1987Ja13), and 0.44 9 (1960Gu02). Other: 0.255 (1967Se05). δ: +0.14 to +0.20, or -4.9 to -2.5 from δ ² /(1+δ ²)=0.02 to 0.04 (δ>0) or 0.86 to 0.96 (δ<0), respectively, from γ(θ) anisotropy in 1979Se13.			
454.76 15	0.0041 3	894.77	3/2+,5/2+	440.01	$3/2^{+}$				%Iy=0.0034 3			

S

From ENSDF

 $^{123}_{52}{\rm Te}_{71}$ -5

L

				¹²³ I a	e decay	v (13.2230 h)	1976Wa	13,2012Ko47 (continued)		
$\gamma(^{123}\text{Te})$ (continued)										
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger a}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments		
505.33 5	0.344 9	505.34	5/2+	0.0	1/2+	(E2)		I _γ : weighted average of 0.0047 <i>6</i> (1976Wa13) and 0.00396 24 (2012Ko47). %Iγ=0.288 8 E _γ : others: 505.6 <i>6</i> (1968Ra11), 505.6 <i>5</i> (1970Sp03), 505 <i>I</i> (1967Se05), 500 <i>I</i> 0 (1960Gu02).		
								I_{γ} : weighted average of 0.31 5 (1968Ra11), 0.32 8 (1970Sp03), 0.379 12 (1976Wa13), 0.337 6 (2012Ko47), and 0.28 6 (1960Gu02). Other: 0.193 (1967Se05).		
528.97 5	1.52 12	687.97	3/2+	159.00	3/2+	(M1+E2)		Mult.: Q from $\gamma(\theta)$ anisotropy in 1979Sc13. %I γ =1.27 10		
								E_{γ} : weighted average of 529.0 4 (1968Ra11), 529.3 4 (1970Sp03), and 528.96 5 (1976Wa13) Othera: 529.0 (1987Ja13) 530.10 (1960Gu02)		
								I_{γ} : unweighted average of 1.27 <i>11</i> (1968Ra11), 1.26 <i>24</i> (1970Sp03), 1.67 <i>5</i> (1976Wa13), 1.49 <i>3</i> (2012Ko47), 1.411 <i>29</i> (1987Ja13), and 2.0 <i>3</i> (1960Gu02). Other: 0.780 (1967Se05).		
								δ : -0.09 6 or -2.8 +6-7 deduced (by the evaluator) from A ₂ =-0.19 2 of 529γ-159γ(θ) in 1969Se09, using adopted δ (E2/M1)=+0.079 <i>11</i> for 159γ, with J(688)=3/2. Others: +0.44 to +0.64, or +4 to +10 from $\delta^2/(1+\delta^2)=0.16$ to 0.29 or 0.94 to 0.99 (δ>0), respectively, from $\gamma(\theta)$		
538.54 5	0.37 4	697.53	$(7/2)^+$	159.00	3/2+			anisotropy in 19793c13, with $J(088)=3/2$. %Iy=0.31 4 E : others: 538 5 5 (1968Pa11) 538 5 5 (1970Sp03) 538 1 (1967Se05)		
								538.0 (1987Ja13).		
								I_{γ} : unweighted average of 0.32 2 (1968Ra11), 0.31 6 (1970Sp03), 0.458 15 (1976Wa13), 0.411 7 (2012Ko47) and 0.379 16 (1987Ja13). Other: 0.195 (1967Se05).		
556.05 13	0.0030 3	996.07	$(5/2)^{-}$	440.01	3/2+			%Iy=0.0025 3		
562.79 12	0.00108 16	1068.16	3/2+,5/2+	505.34	$5/2^{+}$			I_{γ} : weighted average of 0.0037 5 (1976 wars) and 0.00288 24 (2012K047). % I_{γ} =0.00090 14		
h								I_{γ} : weighted average of 0.0013 5 (1976Wa13) and 0.00106 16 (2012Ko47).		
x574° 1	0.007							$\%$ I γ =0.005852 13 E. J.: from 1967Se05 only		
578.26 20	0.0019 5	1068.16	3/2+,5/2+	489.73	7/2+			%Iγ=0.0016 5		
599.69 16	0.0031 4	599.57	1/2+	0.0	$1/2^{+}$			I_{γ} : weighted average of 0.0018 5 (1976Wa13) and 0.0024 10 (2012Ko47). % I_{γ} =0.0026 4		
610.05 23	0.0013 4	769.27		159.00	3/2+			I_{γ} : from 2012Ko47. Other: 0.0031 11 (1976Wa13). % I_{γ} =0.0011 4		
624.58 5	0.093 <i>3</i>	783.61	$3/2^{+}$	159.00	$3/2^{+}$	M1+E2	0.0050 6	I_{γ} : other: <0.00012 (2012Ko47). % I_{γ} =0.078 3		
								$\alpha(K)=0.00435; \alpha(L)=0.000554; \alpha(M)=0.0001098$		
								$\alpha(N)=2.16\times10^{-5}$ 15; $\alpha(O)=2.32\times10^{-6}$ 21 E _w : weighted average of 624.9.5 (1968Ra11), 624.9.5 (1970Sp03), and		
								624.57 5 (1976Wa13). Other: 624 <i>1</i> (1967Se05).		
								I_{γ} : weighted average of 0.08 <i>l</i> (1968Ra11), 0.07 <i>2</i> (1970Sp03), 0.100 <i>3</i> (1976Wa13), and 0.0910 <i>l</i> 7 (2012Ko47). Other: 0.044 (1967Se05).		

6

 $^{123}_{52}$ Te $_{71}$ -6

				¹²³ I e	e decay	v (13.2230 h	a) 1976Wa13,2012Ko47 (continued)
						<u>γ(</u>	¹²³ Te) (continued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	Comments
628.26 22 687.94 8	0.0019 <i>3</i> 0.0321 <i>9</i>	1068.16 687.97	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺	440.01 0.0	3/2 ⁺ 1/2 ⁺		δ : +0.10 to +0.18, or +2.3 to +4.9 from $\delta^2/(1+\delta^2)=0.01$ to 0.03 or 0.84 to 0.96 (δ>0), respectively, from $\gamma(\theta)$ anisotropy in 1979Sc13. %Iγ=0.0016 3 %Iγ=0.0268 8 E _γ : weighted average of 687.7 6 (1968Ra11), 687.7 5 (1970Sp03), and 687.95 8 (1976Wa13). Other: 688 <i>I</i> (1967Se05). I _γ : weighted average of 0.03 <i>I</i> (1968Ra11), 0.04 2 (1970Sp03), 0.0321 <i>I</i> 8
735.87 11	0.056 7	894.77	3/2+,5/2+	159.00	3/2+		(19/6Wa13), and 0.0321 9 (2012Ko4/). Others: 0.017 (196/Se05), <0.08 (1960Gu02). %I γ =0.047 6 E $_{\gamma}$: unweighted average of 736.10 6 (1968Ra11), 735.6 6 (1970Sp03), 735.78 7 (1976Wa13), and 736 1 (1967Se05).
x760.85 20 783.60 6	0.00075 25 0.0634 20	783.61	3/2+	0.0	1/2+	M1+E2	 I_γ: unweighted average of 0.04 <i>I</i> (1968Ra11), 0.05 <i>I</i> (1970Sp03), 0.074 <i>S</i> (1976Wa13), and 0.0593 <i>II</i> (2012Ko47). Other: 0.029 (1967Se05). %I_γ=0.0063 <i>2I</i> %I_γ=0.0530 <i>I7</i> E_γ: weighted average of 784.4 <i>6</i> (1968Ra11), 784.0 <i>6</i> (1970Sp03), and 783.59 <i>6</i> (1976Wa13). Other: 784 <i>I</i> (1967Se05). I_γ: weighted average of 0.05 <i>I</i> (1968Ra11), 0.05 <i>I</i> (1970Sp03), 0.071 <i>3</i> (1976Wa13), and 0.0624 <i>I2</i> (2012Ko47). Other: 0.030 (1967Se05).
837.10 20	0.00056 10	996.07	(5/2)-	159.00	3/2+		δ: +0.20 to +0.33, or -4.9 to -3.0 from δ2/(1+δ2)=0.04 to 0.10 (δ>0) or 0.90 to 0.96 (δ<0), respectively, from γ(θ) anisotropy in 1979Sc13. %Iγ=0.00047 9
877.52 17	0.00086 11	1036.65	3/2+	159.00	3/2+		I_{γ} : weighted average of 0.0006 <i>I</i> (1976Wa13) and 0.00049 <i>I</i> 3 (2012Ko47). % I_{γ} =0.00072 <i>I</i> 0 E_{γ} : Value of 887.52 listed in author's table 2 is a misprint. See FIG.4.
894.8 2	0.00084 9	894.77	3/2+,5/2+	0.0	1/2+		I_{γ} : weighted average of 0.0013 8 (1976Wa13) and 0.00085 11 (2012Ko47). % I_{γ} =0.00070 8 I_{γ} : weighted average of 0.0011 3 (1976Wa13) and 0.00082 9 (2012Ko47).
x898.2 2 909.12 12	0.0007 <i>4</i> 0.00155 <i>11</i>	1068.16	3/2+,5/2+	159.00	3/2+		$\%$ I γ =0.0006 4 %I γ =0.00130 10 L ₂ : weighted average of 0.0016 3 (1976Wa13) and 0.00154 11 (2012Ko47).
1036.63 <i>17</i>	0.00092 7	1036.65 1068.16	3/2 ⁺ 3/2 ⁺ 5/2 ⁺	0.0	$1/2^+$ $1/2^+$		%I _y =0.00121 21
1000.12 13	0.00145 25	1000.10	5/2 ,5/2	0.0	1/2		I_{γ} : unweighted average of 0.0017 <i>1</i> (1976Wa13) and 0.00120 <i>10</i> (2012Ko47).

[†] Additional information 2.

 \neg

[‡] From 1976Wa13, unless otherwise noted. Intensities quoted as from 2012Ko47 are deduced by the evaluator by normalizing their absolute intensities to $I(159\gamma)=100$. For values from 1976Wa13, a 3% uncertainty has been added in quadruture by the evaluator to the quoted uncertainties in 1976Wa13 to account for the uncertainty in efficiency calibration, which is normally 2%–3% and is considered not included by 1976Wa13, since some of their uncertainties are

¹²³Ι ε decay (13.2230 h) 1976Wa13,2012Ko47 (continued)

 $\gamma(^{123}\text{Te})$ (continued)

unrealistically small (<1%).

- # From energy difference of E(levels).
 @ From Adopted Gammas. Values from this study are given in comments.
- & Adopted value is deduced (by the evaluator) from $A_4=0$ and A_2 (given in comments) of γ -159 $\gamma(\theta)$ in 1969Se09 with adopted $\delta(E2/M1)=+0.079$ 11 for 159 γ .
- ^{*a*} For absolute intensity per 100 decays, multiply by 0.8360 19.
- ^b Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

 ∞

 $^{123}_{52}\text{Te}_{71}\text{-}8$

9

 $^{123}_{52}{\rm Te}_{71}\text{-}9$