¹²⁴Te(³He,α) 1982Ga18,1977Fe16

History											
Туре	Author	Citation	Literature Cutoff Date								
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021								

 $J^{\pi}(^{124}\text{Te g.s.})=0^+$.

1982Ga18: E=70 MeV ³He beam was produced from the Michigan State University K50 Cyclotron. Target was isotopically enriched (99.5% in ¹²⁴Te) metallic power on a carbon backing. Reaction products were momentum-analyzed with an Enge split-pole spectrometer and detected with an E- Δ E counter telescope (FWHM \approx 70 keV). Measured $\sigma(E_{\alpha},\theta)$ (accurate to 10%), $\theta(lab)=2.5^{\circ}$ to 30°. Deduced levels, J, π , L-transfers and spectroscopic factors from DWBA analysis. Comparisons with available data. 1982Ga18 also observed a giant resonance-like peak at 3.5-18 MeV; discussed L=4 inner-hole strength. 1982Ga18 also report data on ¹²⁴Te(p,d).

1977Fe16: E=19.408 MeV ³He beam was produced from the 8UD Pelletron tandem accelerator of the University of Sao Paulo. Targets were 60-200 μ g/cm² enriched metallic tellurium (96.21% in ¹²⁴Te) on 20 μ g/cm² carbon backings. Reaction products were detected with four silicon surface-barrier detectors (FWHM=45 keV). Measured $\sigma(E_{\alpha},\theta)$, $\theta=25^{\circ}-95^{\circ}$. Deduced levels, J, π , L-transfers, spectroscopic factors from DWBA analysis. Comparisons with available data.

Other: 1997BoZW (E=32 MeV).

¹²³Te Levels

Spectroscopic factor C²S is obtained from $d\sigma/d\Omega(exp)=N\times C^2S/(2j+1)\times d\sigma/d\Omega(DWBA)$, where N=21.3 is the normalization factor for (³He, α) and j the total angular momentum of the transferred neutron (1977Fe16).

E(level) [†]	L‡	C^2S^{\ddagger}	E(level) [†]	L‡	C^2S^{\ddagger}	E(level) [†]	L‡	C^2S^{\ddagger}	E(level) [†]	L [‡]	C^2S^{\ddagger}
0.0 [@]	0	1.22	690 [@] 10	4	0.76 [@]	1059 10	2		1850 [@] 20	(2)	0.34 [@]
160 [@] 10	2	1.70 [@]	712 10	2		1232 10	4 #	0.87 9	2066 25	4	0.30 <i>3</i>
252 10	5	3.3 3	790 [@] 10		@	1427 10	4 [#]	0.5 1	2340 25	4	0.49 5
498 10	4	2.9 3	906 10	2	1.80 20	1660 10	4	0.68 7	2670 25	4	0.38 4

[†] From 1982Ga18, unless noted otherwise.

[‡] From DWBA analysis of experimental differential cross sections, assuming $3s_{1/2}$, $2d_{3/2}$ (only for 160 level) and $2d_{5/2}$, $1g_{7/2}$, $1h_{11/2}$ single-particle orbits for L=0, 2, 4, 5 transfer, respectively (1982Ga18). Quoted values are from 1982Ga18, unless otherwise noted.

[#] L=4+2 in 1977Fe16.

[@] From 1977Fe16.