¹²²Sn(n, γ) E=res **1977Ca09**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021

1977Ca09: E=0.1-20 keV neutron beams were produced from the Oak Ridge Electron Linear Accelerator (ORELA) facility. Target was 90.80% enriched ¹²²Sn. γ rays were detected with a Ge(Li) detector. Measured Eγ, Iγ. Deduced levels.

Others: 1975Bh01 (E=7.724 MeV), 1974TiZT (E=14.7 MeV), 1972BhZZ (E=res), 1971ChYQ (E=res).

¹²³ Sn	Levels

E(level) [†]	J [#]	Comments
0.0 24.6	11/2 ⁻ 3/2 ⁺	E(level): from Adopted Levels.
150.4 [‡] 6	$1/2^{+}$	
619.5 <i>5</i> 869.6 <i>5</i>	$(9/2)^-$ $(5/2)^+$	
919.8 [‡] 6 930.9 <i>10</i>	$(3/2)^+$ $7/2^-$	
1072.1 [‡] 6 1135.9 <i>11</i>	$(1/2,3/2)^+$ $(1/2,3/2,5/2)^+$	
1194.4 5	(5/2)+	
2155.5 <i>14</i> 2615? <i>3</i>	(1/2,3/2,5/2) $(1/2^+)$	
5945.9	3/2 [@]	$E_n(res)=0.106$ keV. J ^{π} : From 1995Ca25; neutron capture state.
5946.1 5947.5 5947.9 5948.9	1/2@	$E_n(res)=0.258 \text{ keV}.$ $E_n(res)=1.737 \text{ keV}.$ $E_n(res)=2.073 \text{ keV}.$ $E_n(res)=3.138 \text{ keV}.$ $E_n(res)=2.428 \text{ keV}.$
5950.6		$E_n(tes)=5.423$ KeV. $E_n(res)=4.799$ keV.

[†] From a least-squares fit to γ -ray energies, except for resonant levels where E(level)=S(n)+E_n(res), with S(n)=5945.8 *15* from 1977Ca09. Adopted S(n)=5946.0 *12* in 2021Wa16.

^{\ddagger} Fed by primary γ from 258-eV resonance.

[#] From Adopted Levels, unless noted otherwise.

[@] From angular distribution measurements in 1975Bh01.

 $\gamma(^{123}\text{Sn})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Comments
150.4	1/2+	125.76		24.6	3/2+	E_{γ} : from Adopted Gammas, not seen in 1977Ca09.
619.5	$(9/2)^{-}$	619.5 5	100	0.0	$11/2^{-}$	
869.6	$(5/2)^+$	719.0 10	14	150.4	$1/2^{+}$	
		845.0 <i>5</i>	86	24.6	3/2+	
919.8	$(3/2)^+$	769.3 5	25	150.4	$1/2^{+}$	
		895.8 10	75	24.6	3/2+	
930.9	$7/2^{-}$	930.9 10	100	0.0	$11/2^{-}$	
1072.1	$(1/2,3/2)^+$	921.9 5	57	150.4	1/2+	
		1046.8 10	43	24.6	$3/2^{+}$	
1135.9	$(1/2, 3/2, 5/2)^+$	985.3 10	100	150.4	$1/2^{+}$	
1194.4	$(5/2)^+$	1169.8 5	100	24.6	$3/2^{+}$	
2155.5	(1/2,3/2,5/2)	1019.5 10	100	1135.9	$(1/2, 3/2, 5/2)^+$	

Continued on next page (footnotes at end of table)

¹²²Sn(n, γ) E=res 1977Ca09 (continued)

$\gamma(^{123}\text{Sn})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	J_f^π	Comments
5945.9	3/2	3331 [‡] 3	0.05 [@] 1	2615?	$(1/2^+)$	
		3789.1 [‡] 25	0.14 [@] 2	2155.5	(1/2,3/2,5/2)	
		4750.8 [‡] 25		1194.4	$(5/2)^+$	E_{γ} : not seen from this resonance.
		4874.2 [‡] 25		1072.1	$(1/2,3/2)^+$	
		5025.7 [‡] 25	$0.20^{\textcircled{0}}2$	919.8	$(3/2)^+$	
		5076.2 [‡] 15	$0.20^{\textcircled{0}}2$	869.6	$(5/2)^+$	
		5795.5 [‡] 15	1.42 [@] 4	150.4	$1/2^{+}$	
		5921.0 [‡] <i>15</i>	0.49 [@] 2	24.6	3/2+	
5946.1	1/2	3331	0	2615?	$(1/2^+)$	
		4873.9	0.14 [@] 2	1072.1	$(1/2,3/2)^+$	
		5026.2	0.34 [@] 3	919.8	$(3/2)^+$	
		5076.4	0	869.6	$(5/2)^+$	
		5795.6	1.10 [@] 4	150.4	1/2+	
5947.5		5077.8		869.6	$(5/2)^+$	
		5922.7	Ø	24.6	3/2+	
5947.9		5923.1	0.87 [@] 1	24.6	3/2+	
5948.9		5924.1	0.84 [@] 6	24.6	3/2+	
5949.2		5079.5	0.37 [@] 4	869.6	$(5/2)^+$	
		5798.7	0.41 [@] 2	150.4	$1/2^{+}$	
		5924.4		24.6	3/2+	
5950.6		4756.1	0.22 [@] 6	1194.4	$(5/2)^+$	
		5925.8	0.61 [@] 9	24.6	3/2+	

[†] From 1977Ca09, unless otherwise noted. Values without uncertainties are from level-energy differences. Note that no energies are explicitly given for primary γ rays from each resonance state by the authors, instead, γ -ray energies corresponding to thermal neutron separation are quoted for primary γ from each resonance state.

^{\ddagger} γ -ray energies corresponding to thermal neutron separation (1977Ca09).

[#] Quoted values are %photon branching from each level from 1977Ca09, unless otherwise noted.

[@] Relative intensities at 90°, normalized to 100 for the sum of Ge(Li) detector counts between 2.5 to 2.5 MeV from 1977Ca09 at each resonance energy.

 $x \gamma$ ray not placed in level scheme.

¹²²Sn(n,γ) E=res 1977Ca09

Level Scheme

Intensities: Relative photon branching from each level

 $^{123}_{50}{
m Sn}_{73}$