¹²³In β^- decay (6.15 s) 1976Fo02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021

Parent: ¹²³In: E=0.0; $J^{\pi}=9/2^+$; $T_{1/2}=6.15 \text{ s } 27$; $Q(\beta^-)=4386 \ 20$; $\%\beta^-$ decay=100.0

¹²³In-J^{π}, T_{1/2}: From Adopted Levels of ¹²³In. Adopted T_{1/2} is unweighted average of 5.98 s 6 (1974Gr29), 6.68 s 20 (1986Go10), and 5.8 s 2 (2011Hi15), from this study.

¹²³In-Q(β^{-}): From 2021Wa16.

The decay scheme is that proposed by 1976Fo02.

1976F002: ¹²³In source was produced as isotope separated fission products from the OSIRIS and PINGIS facilities. γ rays were detected with Ge(Li) and NaI(Tl) detectors and electrons were detected with a cooled Si(Li) detector and a scintillator. Measured E γ , I γ , E β , I β , E(ce), I(ce), $\gamma\gamma$ -coin, $\beta\gamma$ (t). Deduced levels, J, π , T_{1/2}, β -decay branching ratios, log *ft*, conversion coefficients, γ -ray multipolarities. Systematics of neighboring tin isotopes.

1986Go10: ¹²³In source was produced as mass separated fission products at the OSIRIS ISOL facility at Studsvik. γ rays were detected with HPGe detectors and β particles were detected with a planar β detector. Measured E γ , I γ , E β , I β , $\beta\gamma$ -coin, $\beta\gamma(t)$. Deduced parent T_{1/2}, absolute γ emission probability for 619 γ .

Others: 2011Hi15, 1987Sp09, 1986Go10, 1974Gr29, 1973Ja05, 1960Yu01.

The decay scheme could be incomplete due to a large gap between the highest excited level and the Q-value.

¹²³Sn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡		Comments
0.0	$11/2^{-}$	129.2 d 5		
24.6 4	$3/2^{+}$	40.06 min 2		
618.81 24	$(9/2)^{-}$			
870.2 4	$(5/2)^+$			
931.4 5	$7/2^{-}$			
1044.3 4	$(7/2)^+$	<0.1 ns	$T_{1/2}$: from (β)(1019.7 γ)(t) (1976Fo02).	
1155.0 <i>3</i>	$7/2^{+}$	<0.1 ns	$T_{1/2}$: from (β)(1130.5 γ)(t) (1976Fo02).	
2001.2 3	$(9/2)^+$			

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels, unless otherwise noted.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft		Comments	
(2385 20)	2001.2	1.89 15	5.45 5	av Eβ=963 11		_
(3231 20)	1155.0	64 4	4.47 4	av E β =1357 12		
(3342 20)	1044.3	32 2	4.83 4	av $E\beta = 1409 \ 12$		
(3455 20)	931.4	0.18 11	7.1 <i>3</i>	av Eβ=1462 12		
(3516 [#] 20) (3767 20)	870.2 618.81	0.80 <i>22</i> 0.42 <i>24</i>	6.5 <i>1</i> 7.0 <i>3</i>	av Eβ=1491 <i>12</i> av Eβ=1609 <i>12</i>		

[†] From γ +ce intensity balance at each level.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

¹²³In β^- decay (6.15 s) **1976Fo02** (continued)

 $\gamma(^{123}\text{Sn})$

I γ normalization: Intensities from 1976Fo02 are for per 100 parent decays, obtained from I(γ +ce to g.s.+24.6 level)=100, by assuming no I(β^-) to g.s. and 24.6 level.

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger@}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
174.18 6	0.19 3	1044.3	(7/2)+	870.2	(5/2)+	[M1,E2]	0.17 6	$\begin{array}{l} \alpha(\mathrm{K}) = 0.14 \ 4; \ \alpha(\mathrm{L}) = 0.024 \ 12; \\ \alpha(\mathrm{M}) = 0.0048 \ 23 \\ \alpha(\mathrm{N}) = 0.0009 \ 4; \ \alpha(\mathrm{O}) = 5.8 \times 10^{-5} \\ 17 \end{array}$
x175.01 8 223.5 5	0.13 <i>3</i> 0.12 <i>4</i>	1155.0	7/2+	931.4	7/2-	[E1]	0.0189	$\alpha(K)=0.0165 \ 3; \ \alpha(L)=0.00201$ $3; \ \alpha(M)=0.000392 \ 6$ $\alpha(N)=7.30\times10^{-5} \ 12;$ (C) $5.02\times10^{-6} \ 0$
284.7 2	0.17 4	1155.0	7/2+	870.2	(5/2)+	[M1,E2]	0.037 5	$\alpha(O) = 5.93 \times 10^{-6} \text{ g}^{-6}$ $\alpha(K) = 0.032 \ 4; \ \alpha(L) = 0.0045 \ 10;$ $\alpha(M) = 0.00089 \ 21$ $\alpha(N) = 0.00017 \ 4;$ $\alpha(D) = 0.00017 \ 4;$
425.4 7	0.17 8	1044.3	(7/2)+	618.81	(9/2)-	[E1]	0.00352	$\alpha(O)=1.27\times10^{-5} 14$ $\alpha(K)=0.00306 5;$ $\alpha(L)=0.000368 6;$ $\alpha(M)=7.16\times10^{-5} 11$ $\alpha(N)=1.342\times10^{-5} 20;$ $\alpha(O)=1.130\times10^{-6} 17$
536.4 <i>3</i> 618.8 <i>3</i>	0.90 8 2.6 2	1155.0 618.81	7/2 ⁺ (9/2) ⁻	618.81 0.0	(9/2) ⁻ 11/2 ⁻	M1,E2	0.00411	$\alpha(K)=0.00354 5; \alpha(L)=0.000462 7; \alpha(M)=9.06\times10^{-5} 13 \alpha(N)=1.690\times10^{-5} 24; \alpha(O)=1.375\times10^{-6} 20$
845.5 2 931.2 8	1.3 2 0.3 <i>1</i>	870.2 931.4	(5/2) ⁺ 7/2 ⁻	24.6 0.0	3/2 ⁺ 11/2 ⁻	E2	1.51×10 ⁻³	$\begin{array}{l} \alpha({\rm K}) = 0.00163; \ \alpha({\rm L}) = 0.00020 \\ \alpha({\rm K}) = 0.001310 \ 19; \\ \alpha({\rm L}) = 0.0001620 \ 23; \\ \alpha({\rm M}) = 3.17 \times 10^{-5} \ 5 \\ \alpha({\rm N}) = 5.94 \times 10^{-6} \ 9; \\ \alpha({\rm Q}) = 5.04 \times 10^{-7} \ 8 \end{array}$
957.3 <i>5</i> 1019.7 2	0.4 <i>I</i> 32 2	2001.2 1044.3	(9/2) ⁺ (7/2) ⁺	1044.3 24.6	(7/2) ⁺ 3/2 ⁺	(E2)	1.23×10 ⁻³	$\alpha(K)=0.001070 \ 15;\alpha(L)=0.0001312 \ 19;\alpha(M)=2.56\times10^{-5} \ 4\alpha(N)=4.81\times10^{-6} \ 7;\alpha(O)=4.11\times10^{-7} \ 6Mult.: M1,E2 \ from\alpha(K)exp=0.0021 \ 11$
1130.5 2	63 4	1155.0	7/2+	24.6	3/2+	E2	0.000987 14	(19/6F002). $\alpha = 0.000987 \ I4; \ \alpha(K) = 0.000857 \ I2; \ \alpha(L) = 0.0001041 \ I5; \ \alpha(M) = 2.03 \times 10^{-5} \ 3$ $\alpha(N) = 3.82 \times 10^{-6} \ 6; \ \alpha(O) = 3.28 \times 10^{-7} \ 5; \ \alpha(IPF) = 1.320 \times 10^{-6} \ 21$ $E_{\gamma}: \text{ other: } 1130.5 \ 5 \ (1973Ja05).$ Mult.: M1,E2 from

Continued on next page (footnotes at end of table)

123 In β^- decay (6.15 s) 1976Fo02 (continued)

$\gamma(^{123}\text{Sn})$ (continued)

E _γ ‡	Ι _γ ‡@	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Comments
						α (K)exp=0.0011 4 (1976Fo02).
1131 2	≤0.2	2001.2	$(9/2)^+$	870.2	$(5/2)^+$	E_{γ}, I_{γ} : From $\gamma\gamma$ -coincidence.
1155.2 8	0.04 2	1155.0	$7/2^{+}$	0.0	$11/2^{-}$	
1382.3 2	1.12 7	2001.2	$(9/2)^+$	618.81	$(9/2)^{-}$	
2001.2 4	0.27 6	2001.2	$(9/2)^+$	0.0	$11/2^{-}$	

[†] Additional information 1.
[‡] From 1976Fo02, unless otherwise noted. Intensity values from 1976Fo02 and 1986Go10 are absolute intensities per 100 decays.
[#] From Adopted Gammas. Supporting evidence from this study is given under comments if available.
[@] Absolute intensity per 100 decays.

 $x \gamma$ ray not placed in level scheme.

¹²³In β^- decay (6.15 s) 1976Fo02

