238 U(12 C,F γ), 208 Pb(18 O,F γ) 2012As05

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021					

2012As05: two experiments: in the first, E=90 MeV ¹²C beam was produced from the Legnaro XTU tandem and target was 47 mg/cm² ²³⁸U. In the second, E=85 MeV beam was produced from the Vivitron accelerator of IReS (Strasbourg) and target was 100 mg/cm² ²⁰⁸Pb. In both experiments, γ rays were detected with the Euroball array consisting of 71 Compton-suppressed Ge detectors (15 clusters, 26 clovers, 30 tapered single-crystal Ge detectors). Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, J, π , band structures, configurations. Comparisons with shell-model calculations.

¹²³ Sn Level

E(level) [†]	J ^π ‡	T _{1/2}		Comments
0.0 [#]	$11/2^{-}$			
1106.81 [#] 20	$15/2^{-}$			
1944.8 [@] 11	19/2+			
2152.8 [@] 15	$23/2^+$			
2262.4 [#] 3	19/2-			
2541.5 [#] 4	$23/2^{-}$			
2711.3 [#] 4	27/2-			
3292.8 [@] 15	$(27/2^+)$			
3754.8? 5	$(31/2^{-})$			
3818.3? 5	$(31/2^{-})$			
4116.4 15	$(31/2^+)$			
43/7.8 16	$(35/2^+)$	<30 ns	$T_{1/2}$: estimated by 2012As05.	
4742.07 0	$(35/2^{-})$			
5477.6? 7	(33/2)			
5520.4? 7				
5643.7 16	$(20/2^{+})$			
0230.8 <i>10</i> 7159.0 <i>16</i>	(39/2)			
, 10, 10 10				

[†] From a least-squares fit to γ -ray energies.

[‡] Proposed by 2012As05, based on band assignments, known assignments of low-lying states and analogy with neighboring isotopes.

 $\gamma(^{123}\text{Sn})$

[#] Band(A): Band based on $11/2^-$.

[@] Band(B): Band based on $19/2^+$.

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	E _f	J_f^π	Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
169.8 2	‡	2711.3	27/2-	2541.5	23/2-	987.8 [#] 3		4742.6?	(35/2-)	3754.8?	(31/2 ⁻)
208 [†]		2152.8	$23/2^+$	1944.8	$19/2^{+}$	991.6 [#] 3		4809.9?	$(35/2^{-})$	3818.3?	$(31/2^{-})$
261.4 3	43 9	4377.8	$(35/2^+)$	4116.4	$(31/2^+)$	1043.5 [#] 3		3754.8?	$(31/2^{-})$	2711.3	27/2-
279.1 2	‡	2541.5	$23/2^{-}$	2262.4	19/2-	1106.8 2	‡	1106.81	$15/2^{-}$	0.0	$11/2^{-}$
710.5 [#] 3		5520.4?		4809.9?	$(35/2^{-})$	1107.0 [#] 3		3818.3?	$(31/2^{-})$	2711.3	$27/2^{-}$
735.0 [#] 3		5477.6?		4742.6?	$(35/2^{-})$	1140.0 <i>3</i>	100	3292.8	$(27/2^+)$	2152.8	$23/2^+$
823.6 3	100	4116.4	$(31/2^+)$	3292.8	$(27/2^+)$	1155.6 2	‡	2262.4	$19/2^{-}$	1106.81	$15/2^{-}$
838 [†]		1944.8	$19/2^{+}$	1106.81	15/2-	1265.8 4	12 4	5643.7		4377.8	$(35/2^+)$
928.3 4	31	7159.0		6230.8	$(39/2^+)$	1515.3 5	62	7159.0	(20/0+)	5643.7	(25/2+)
						1853.0 5	52	6230.8	$(39/2^+)$	4377.8	$(35/2^{+})$

Continued on next page (footnotes at end of table)

238 U(12 C,F γ), 208 Pb(18 O,F γ) 2012As05 (continued)

$\gamma(^{123}\text{Sn})$ (continued)

[†] γ not seen in 2012As05 and Eγ taken from Adopted Gammas.
[‡] Intensity could not be determined in the present experiment due to decay from a 34-μs isomer at 2711.
[#] Placement of transition in the level scheme is uncertain.

 $^{123}_{50}$ Sn₇₃-3

 $^{123}_{50}{
m Sn}_{73}$

238 U(12 C,F γ), 208 Pb(18 O,F γ) 2012As05

