¹²⁴Sn(p,d) **1970Ca01,1982Fl02**

Type Author Citation Literature Cutoff Date

Full Evaluation Jun Chen NDS 174, 1 (2021) 15-Apr-2021

1970Ca01: E=30 MeV proton beam was produced from the RHEL LINAC. Reaction products were momentum analyzed with a magnetic spectrograph (FWHM=55-70 keV). Measured $\sigma(E_d,\theta)$, $\theta \le 60^\circ$. Deduced levels, J, π , L-transfers from DWBA analysis. J-dependence of $\sigma(\theta)$ for L=2 is discussed to deduce $J^{\pi} = 5/2^+$ or $3/2^+$ (1970Ca01).

1982Fl02: analysis of data obtained at Institut de Physique Nucleaire, Orsay in 1969 with E=20 MeV proton beam. Reaction products were momentum analyzed with a magnetic spectrometer (FWHM=25 keV). Measured $\sigma(E_d,\theta)$, θ =10° to 50°. Deduced levels, J, π , spectroscopic factors, L-transfers from DWBA analysis.

1986Ma37: E=50 MeV proton beam was produced at RCNP. Target was 0.75 mg/cm² 96.96% enriched metallic 124 Sn. Reaction products were momentum analyzed with the multi-range spectrograph RAIDEN (FWHM=15-20 keV). Measured $\sigma(\theta)$ of deeply-bound hole states. Deduced average excitation energies, strength functions, spreading widths from DWBA analysis. Others: 2020Ga03, 1982HyZZ, 1980Is01, 1979CrZY, 1973Is09.

¹²³Sn Levels

E(level) [†]	$J^{\pi \ddagger}$	L#	$C^2S^{\textcircled{@}}$	Comments
0.0		5+2	4.5+3.0	E(level): Unresolved doublet (1982Fl02).
				C ² S: 4.5 15 for L=5, 3.0 4 for L=2 obtained by 1982Fl02 from peak angle systematics.
139		0	1.9 2	
899	5/2+	2		
1028		(4)	2.8 14	
1185		2	3.2 5	E(level),L: from 1982Fl02. 1970Ca01 report L=2+4, suggesting a possible contribution from 7/2+ level at 1155.
1484	5/2+	2	2.8 4	
1780	$5/2^{+}$	2		
1900	$3/2^{+}$	2		
2020	$3/2^{+}$	2		
2080	$5/2^{+}$	2		
2150				
2270	$3/2^{+}$	2		
2350		4		
2410		0		
2620		0		
2730	(2 (2±)	4		
2850	$(3/2^+)$	(2)		
3020				
3160 3240	3/2+	2		
3300	3/2	2		
5640		4	4.17 <mark>&</mark>	E(1 1) : (2020 7000 E 1 00 M V (100(M 27)
		4		E(level): in energy region of 3830-7000, Γ =1.90 MeV (1986Ma37).
6330 &		1	1.55	E(level): in energy region of 3830-8200, Γ =2.60 MeV (1986Ma37).
6900 <mark>&</mark>		4	7.44 <mark>&</mark>	E(level): in energy region of 3830-10020, Γ =3.89 MeV (1986Ma37).
7120 <mark>&</mark>		1	2.19 <mark>&</mark>	E(level): in energy region of 3830-10020, Γ =3.68 MeV (1986Ma37).
8520 <mark>&</mark>		4	3.27 <mark>&</mark>	E(level): for energy region of 7000-10020, Γ =2.02 MeV (1986Ma37).
9040 <mark>&</mark>		1	0.63 <mark>&</mark>	E(level): for energy region of 8200-10020, Γ =1.20 MeV (1986Ma37).

[†] From 1970Ca01, unless otherwise noted.

[‡] From J-dependence of $\sigma(\theta)$ for L=2 transfer (1970Ca01).

[#] From angular distribution analyses by 1970Ca01, unless noted otherwise.

[®] From DWBA analysis (1982Fl02), unless otherwise noted.

[&]amp; From 1986Ma37. Quoted energy values are average excitation energies, calculated using strength functions in the indicated energy region in comments.