¹²³Sn β^- decay (40.06 min) 1977Ti03,2006Kr04,1974Ra03

		History			
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021		

Parent: ¹²³Sn: E=24.6 4; $J^{\pi}=3/2^+$; $T_{1/2}=40.06 \text{ min } 2$; $Q(\beta^-)=1408.2 24$; $\%\beta^-$ decay=100.0

¹²³Sn-E, J^{π} , $T_{1/2}$: From Adopted Levels of ¹²³Sn.

¹²³Sn-Q(β^{-}): From 2021Wa16.

1977Ti03: ^{123m}Sn activity was produced by irradiation of 97.8% enriched ¹²²Sn with thermal neutrons and 96% enriched ¹²⁴Sn with fast neutrons at Saha Institute of Nuclear Physics. X and γ rays were detected with Ge(Li) detectors and conversion electrons were detected with a six-gap β -ray spectrometer. Measured E γ , I γ , E(X ray), I(X ray), E(ce), I(ce). Deduced levels, J, π , β -decay branching ratios, log *ft*, conversion coefficients, γ -ray multipolarities. Comparisons with available data.

2006Kr04: ^{123m}Sn activity was produced in thermal neutron capture on ¹²²Sn with neutrons from the Oregon State TRIGA reactor (OSTR). γ rays were detected with a HPGe detector. Measured E γ , I γ . Deduced levels, β -decay branching ratios.

1974Ra03: ^{123m}Sn activity was produced by irradiation of 95% enriched ¹²²Sn with thermal neutrons at ORNL. γ rays were detected with a 50-cm³ Ge(Li) detector. Measured E γ , I γ . Deduced levels, J, π , β -decay branching ratios, log *ft*. Comparisons with available data.

1968Ba04: ^{123m}Sn activity was produced by irradiation of 92.3% enriched ¹²²Sn with thermal neutrons from the MIT reactor. γ rays were detected with a 1.2 cm³ Ge(Li) detector. Measured E γ , I γ . Deduced levels, J, π , β -decay branching ratios, log *ft*.

1968Je02: ^{123m}Sn activity was produced by irradiation of enriched ¹²²Sn with neutrons from the I.E.A de Sao Paulo reactor. γ rays were detected with a NaI(Tl) and a Ge(Li) detector. Measured E γ , I γ . Deduced levels, J, π , β -decay branching ratio, log *ft*.

Others:

1949Du15: measured ce- β -coin, ce(t). Deduced parent T_{1/2}.

1949Le05: measured β (t). Deduced parent T_{1/2}.

1963Sc12: measured ce- γ (t). Deduced T_{1/2} of 160 level.

1968Er03: measured γ (t). Deduced parent T_{1/2}.

1969PrZY: measured E γ , I γ . Also report data on ¹²⁴Sn(p,2n γ).

1970OsZZ: parent $T_{1/2}$.

1970Si21: measured $\beta \gamma(t)$. Deduced T_{1/2} of 160 level.

1973Be18: measured $\gamma\gamma$ (t). Deduced T_{1/2} of 160 level.

1990Ab06: measured γ (t). Deduced parent T_{1/2}.

¹²³Sb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	7/2+	stable	
160.33 <i>3</i>	5/2+	0.61 ns 4	$T_{1/2}$: adopted value is weighted average of 0.60 ns 8 (1970Si21), 0.64 ns 5 (1963Sc12), 0.57 ns 7 (1969Sh12), 0.60 ns 4 (1973Be18) and 0.62 ns 21 (1964Sh23).
542.06 <i>5</i> 712.56 <i>21</i>	$(3/2)^+$ $1/2^+$	5.3 ps +12-10	

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

β^- radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments		
(720.2 25)	712.56	0.011 3	8.3 1	av Eβ=235.50 94		
(890.7 24)	542.06	0.055 5	7.93 4	av E β =302.57 98		
(1272.5 24)	160.33	99.9 <i>3</i>	5.248 4	av E β =461.1 11		

[†] From γ +ce intensity balance at each level.

[‡] Absolute intensity per 100 decays.

¹²³ Sn β^{-} decay (40.06 min)	1977Ti03,2006Kr04,1974Ra03 (continued)
Silp uccay (40.00 mm)	19//1105,2000K104,19/4Ka05 (Continue

 $\gamma(^{123}\text{Sb})$

I γ normalization: From $\Sigma I(\gamma + ce \text{ to } g.s.) = 100$.

Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	Comments
160.34 3	100	160.33	5/2+	0.0	7/2+	M1+E2	0.078 10	0.1668	B(M1)(W.u.)=0.0075 5; B(E2)(W.u.)=1.25 +36-31 %Iy=85.69 18 $\alpha(K)=0.1439 21; \alpha(L)=0.0185 3;$ $\alpha(M)=0.00365 6$ $\alpha(N)=0.000705 10;$ $\alpha(O)=6.94\times10^{-5} 10$ E _y : weighted average of 160.35 3 (2006Kr04), 160.0 3 (1977Ti03), 160.33 5 (1974Ra03), 159.7 5 (1968Ba04), and 160.6 6 (1968Je02). Other: 153 5 from E(ce) (1949Du15). Mult, δ : $\alpha(K)$ exp=0.15 1 and K/L=7.6 6 (1977Ti03) gives $\delta(E2/M1)=0.21 + 14 - 21$, using BrlccMixing.
170.15 38	0.004 3	712.56	1/2+	542.06	(3/2)+				%Iy=0.003 3 E_{γ} : weighted average of 171.22 38 (2006Kr04) and 170.9 7 (1977Ti03). I _{\gamma} : weighted average of 0.003 3 (2006Kr04) and 0.008 5 (1977Ti03)
381.75 5	0.047 3	542.06	(3/2)+	160.33	5/2+	M1(+E2)			(19771103). %I γ =0.040 3 E _y : weighted average of 381.77 5 (2006Kr04), 381.1 4 (1977Ti03), 381.7 4 (1974Ra03), 381.3 7 (1968Je02), and 381 1 (1968Ba04). I _y : weighted average of 0.050 3 (2006Kr04), 0.049 5 (1977Ti03), 0.05 1 (1974Ra03), and 0.040 4 (1968Ba04). Other: 0.027 3) (1968Je02) is discrement
541.95 10	0.021 3	542.06	(3/2)+	0.0	7/2+				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
552.37 24	0.009 2	712.56	1/2+	160.33	5/2+				% $I\gamma$ =0.0077 <i>18</i> E_{γ} : weighted average of 552.29

Continued on next page (footnotes at end of table)

 123 Sn β^- decay (40.06 min) 1977Ti03,2006Kr04,1974Ra03 (continued)

 $\gamma(^{123}\text{Sb})$ (continued)

 E_{γ} E_i(level) Comments

24 (2006Kr04), 552.8 4 (1977Ti03), 552.2 4 (1974Ra03), and 552 1 (1968Ba04). I_{γ}: weighted average of 0.010 3 (2006Kr04), 0.010 3 (1977Ti03), 0.014 3 (1974Ra03), and 0.007 2 (1968Ba04).

[†] Additional information 1.
[‡] From Adopted Gammas. Values and arguments from this study are given in comments.

[#] For absolute intensity per 100 decays, multiply by 0.8569 18.

