¹²³Sb IT decay (214 ns) 2009Wa02,2008Jo03

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021

Parent: ¹²³Sb: E=2238.6 5; $J^{\pi}=(19/2^{-})$; $T_{1/2}=214$ ns 3; %IT decay=100.0

¹²³Sb-J^{π},T_{1/2}: From Adopted Levels. Adopted T_{1/2} is from γ (t) in 2008Jo03.

2009Wa02: ¹²³Sb isomers were produced in two experiments: ¹²²Sn(⁷Li, α 2n γ) E=54 MeV ⁷Li beam from the 14UD Pelletron at the Australian National University on a target of 3.5 mg/cm² enriched ¹²²Sn. γ rays were detected with the CAESAR array of six Ge detectors with BGO anti-Compton shields and two LEPS detectors; conversion electrons were detected with a cooled Si(Li) detector. Measured E γ , I γ , E(ce), I(ce), $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$, $\gamma(t)$, $\gamma\gamma(t)$. The second experiment Yb,Lu,W,Os(¹³⁶Xe,X) with E=6.0-6.2 MeV/nucleon ¹³⁶Xe beam from ATLAS facility at Argonne. γ rays were detected with the GAMMASPHERE array of 100 Compton-suppressed Ge detectors. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, J, π , isomer T_{1/2}, conversion coefficients, γ -ray multipolarities, mixing ratios, branching ratios, transition strengths. Comparisons with theoretical calculations. Systematics of neighboring Sb isotopes.

2008Jo03: ¹²³Sb isomers were produced by ²⁷Al(¹⁷⁸Hf,X) with E=1150 MeV beam provided by ATLAS facility at Argonne on a ²⁷Al frame supporting a ²⁰⁸Pb target for other experiments. γ rays were detected with the GAMMASPHERE array of 101 Compton-suppressed HPGe detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$, $\gamma(t)$, $\gamma\gamma(t)$. Deduced levels, J, π , isomer halflives, γ -ray multipolarities, mixing ratios. Pulsed beam with short pulses of ≈ 0.5 ns width and separated by 82.5 ns.

¹²³Sb Levels

E(level) [†]	J ^π ‡	T _{1/2} #	Comments
0.0 160.0 <i>4</i>	$7/2^+$ $5/2^+$		
1030.2 <i>3</i>	9/2+		
1088.58 23	$11/2^{+}$	0.52 ps +5-4	
1260.6 4	$(9/2^+)$		
1656.14 22	$11/2^{-}$		
2037.6 3	$(15/2)^{-}$	37.3 ns 8	$T_{1/2}$: from $\gamma\gamma(t)$ (2009Wa02). Other: 37 ns 4 from $\gamma\gamma(t)$ in 2008Jo03.
2238.6 5	(19/2 ⁻)	214 ns 3	$T_{1/2}$: from $\gamma\gamma(t)$ (2009Wa02). Other: 190 ns 30 from $\gamma(t)$ in 2008Jo03.

[†] From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 0.3$ keV where not given.

[‡] From Adopted Levels. The same assignments are proposed by 2008Jo03 and/or 2009Wa02 based on $\gamma\gamma(\theta)$, γ -ray intensity balance, analog states in ¹²¹Sb, and known assignments for low-lying states, except that these assignments are placed inside parenthesis by the evaluator if there is no firm evidence from other studies.

[#] From Adopted Levels. Values from this study are indicated in comments.

 $\gamma(^{123}\text{Sb})$

I γ normalization: From $\Sigma I(\gamma + ce \text{ to g.s.}) = 100$. $I(\gamma + ce)$ intensity is not balanced at some levels, probably due to unobserved transitions. The decay scheme is thus considered incomplete by the evaluator and the normalization factor is taken as estimated.

E_{γ}^{\ddagger}	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	$\delta^{\mathbf{@}}$	α^{\dagger}	Comments
160.3 5	25 3	160.0	5/2+	0.0	7/2+	M1+E2	0.078 10	0.167 3	$\alpha(K)=0.1440\ 24;\ \alpha(L)=0.0185\ 3;\ \alpha(M)=0.00366\ 7$ $\alpha(N)=0.000705\ 12;\ \alpha(O)=6.94\times10^{-5}\ 12$ Ex.: other: 160.3 (2009Wa02)
201.0 4	104 <i>18</i>	2238.6	(19/2 ⁻)	2037.6	(15/2)-	[E2]		0.1420 23	$\alpha(K)=0.1152 \ 18; \ \alpha(L)=0.0216 \ 4; \ \alpha(M)=0.00436 \ 7 \ \alpha(N)=0.000813 \ 13; \ \alpha(O)=6.86 \times 10^{-5} \ 11 \ B(E2)(W.u.)=0.1943 \ 34 \ E_{\rm ev} \ others; \ 200 \ 4 \ (2009Wa02) \ 201 \ 0 \ (2007Iu06)$
381.7 4	114 15	2037.6	(15/2)-	1656.14	11/2-	E2		0.01725	By: $0.0148.200.1(200)(1202), 201.0(2007)(000).$ B(E2)(W.u.)=0.0486 <i>12</i> $\alpha(K)=0.01460$ 2 <i>1</i> ; $\alpha(L)=0.00214$ 3; $\alpha(M)=0.000427$ 7 $\alpha(N)=8.10\times10^{-5}$ <i>12</i> ; $\alpha(O)=7.43\times10^{-6}$ <i>11</i> E _{γ} : others: 381.6 (2009Wa02), 381.7 (2007Ju06). Mult.: $(382\gamma)(626\gamma)(\theta)$: A ₂ =-0.045 7, A ₄ =-0.003 <i>10</i> gives $\delta(O/Q)=-0.07$ 2 in 2009Wa02; but M2 and M3 ruled out by RUL.
396.0 <i>5</i> 567.7 <i>4</i>	29 <i>3</i> 14 <i>3</i>	1656.14 1656.14	$\frac{11/2^{-}}{11/2^{-}}$	1260.6 1088.58	$(9/2^+)$ 11/2 ⁺				E_{γ} : other: 395.6 (2009Wa02). E_{γ} : other: 567.4 (2009Wa02).
626.1 4	94 7	1656.14	11/2-	1030.2	9/2+	(E1)		1.51×10^{-3}	$\alpha(K)=0.001314$ 19; $\alpha(L)=0.0001575$ 23; $\alpha(M)=3.09\times10^{-5}$
									$\alpha(N)=5.96 \times 10^{-6} \ 9; \ \alpha(O)=5.88 \times 10^{-7} \ 9$ E _{γ} : other: 625.7 (2009Wa02). Mult.: D from $\gamma\gamma(\theta)$ in 2009Wa02. Additional information 1.
949.0 [#]	1.8 5	2037.6	(15/2)-	1088.58	11/2+	[M2]		0.00475	B(M2)(W.u.)= $6.5 \times 10^{-4} + 22 - 19$ α (K)= $0.00410 \ 6$; α (L)= $0.000518 \ 8$; α (M)= $0.0001026 \ 15$ α (N)= $1.98 \times 10^{-5} \ 3$; α (O)= $1.97 \times 10^{-6} \ 3$ I _{γ} : from I(381.7 γ)=114 15 (2008Jo03) and I(949.0 γ /381.6 γ)= $1.5 \ 4/95.9 \ 24$ (2009Wa02).
1007.3 [#]	3.0 6	2037.6	(15/2)-	1030.2	9/2+	[E3]		0.00281	$\alpha(K)=0.00241 \ 4; \ \alpha(L)=0.000326 \ 5; \ \alpha(M)=6.48\times10^{-5} \ 9 \ \alpha(N)=1.241\times10^{-5} \ 18; \ \alpha(O)=1.191\times10^{-6} \ 17 \ I_{\gamma}: \ from \ I(381.7\gamma)=114 \ 15 \ (2008Jo03) \ and \ I(1007 \ 3\gamma/381 \ 6\gamma)=2 \ 5 \ 4/95 \ 9 \ 24 \ (2009Wa02)$
1030.3 4	100 8	1030.2	9/2+	0.0	7/2+	M1+E2	-0.54 5	1.51×10 ⁻³ 2	$\alpha(K)=0.001316\ 21;\ \alpha(L)=0.0001591\ 25;\ \alpha(M)=3.13\times10^{-5}$ $\sigma(N)=6\ 05\times10^{-6}\ 10;\ \alpha(\Omega)=6\ 03\times10^{-7}\ 10$
1088.6 <i>3</i>	14 3	1088.58	11/2+	0.0	7/2+	E2		1.13×10 ⁻³	E_{γ} : other: 1030.2 (2009Wa02). B(E2)(W.u.)=19.6 <i>11</i>

 \mathbf{b}

From ENSDF

						¹²³ Sb IT	decay (214 ns)	2009Wa02,2008Jo03 (continued)
							$\gamma(12)$	²³ Sb) (continued)
E_{γ}^{\ddagger} 1	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	$lpha^\dagger$	Comments
1100.9 5 1260.9 7 1655 9 [#]	18 <i>4</i> 7 2	1260.6 1260.6 1656.14	(9/2 ⁺) (9/2 ⁺) 11/2 ⁻	160.0 0.0	5/2 ⁺ 7/2 ⁺ 7/2 ⁺	[M2]	1.25×10 ⁻³	$\begin{aligned} \alpha(K) = 0.000984 \ 14; \ \alpha(L) = 0.0001212 \ 17; \ \alpha(M) = 2.39 \times 10^{-5} \ 4 \\ \alpha(N) = 4.60 \times 10^{-6} \ 7; \ \alpha(O) = 4.53 \times 10^{-7} \ 7 \\ E_{\gamma}: \ other: \ 1088.5 \ (2009Wa02). \\ I_{\gamma}: \ estimated \ by \ the \ evaluator \ from \ intensity \ balance. \\ Mult.: \ Q \ from \ \gamma\gamma(\theta) \ in \ 2009Wa02. \\ E_{\gamma}: \ other: \ 1100.1 \ (2009Wa02). \\ E_{\gamma}: \ other: \ 1260.3 \ (2009Wa02). \\ E_{\gamma}: \ other: \ 1260.3 \ (2009Wa02). \end{aligned}$

[†] Additional information 2.
[‡] From 2008Jo03, unless otherwise noted. Intensities are relative within the band from 2008Jo03.
[#] From 2009Wa02.
[@] From Adopted Gammas. Assignments and arguments from this study are given in comments, where available.
[&] For absolute intensity per 100 decays, multiply by ≈0.7.

 $^{123}_{51}{\rm Sb}_{72}$