¹²²Sn(pol p,p) IAR 1975Ar04 | | | History | | |-----------------|----------|-------------------|------------------------| | Туре | Author | Citation | Literature Cutoff Date | | Full Evaluation | Jun Chen | NDS 174, 1 (2021) | 15-Apr-2021 | 1975Ar04: E=7.2-12.0 MeV polarized proton beams were produced from the FN tandem Van de Graaff accelerator at Rutgers University. Target was $1000 \ \mu \text{g/cm}^2 \ 92\%-98\%$ enriched ^{122}Sn . Reaction products were detected with Si(Li) detectors. Measured $\sigma(\theta)$, analyzing powers (E, θ). Deduced resonance energies, J, π , widths, L-transfers. Comparisons with available data. ## ¹²³Sb Levels Γ: From analysis of experimental cross sections and analyzing powers compared with theoretical calculations. | E(level) [†] | Jπ‡ | L‡ | E(p)(c.m.) | Comments | |-----------------------|-------------|-----|------------|--| | 14261 | 3/2+ | 2 | 7689 | Γ =48 keV; Γ _p =7.4 keV | | 14395 | 1/2+ | 0 | 7823 | E(level): IAR of 24.6-keV, $3/2^+$ state in 123 Sn.
Γ =48 keV; Γ_p =14.3 keV
E(level): IAR of 150.4-keV, $1/2^+$ state in 123 Sn. | | 15434 | 5/2+ | 2 | 8862 | Γ =74 keV; Γ _p =3.4 keV | | 15734 | 5/2+ | 2 | 9162 | E(level): IAR of 1194.4-keV, $5/2^+$ level in 123 Sn; L=2 in 122 Sn(d,p). Γ =93 keV; Γ _p =2.7 keV E(level): IAR of 1488.8-keV, $5/2^+$ level in 123 Sn; L=2 in 122 Sn(d,p). | | 16932 | 7/2- | 3 | 10360 | Γ =94 keV; Γ _p =19.6 keV | | 17376 | (7/2-) | (3) | 10840 | E(level): IAR of 2726-keV, $7/2^-$ level in 123 Sn; L=2 in 122 Sn(d,p). Γ=140 keV; Γ _p =8.0 keV E(level): IAR of 3151-keV, $(7/2^-)$ level in 123 Sn; L=3 in 122 Sn(d,p). | | 17563 | $(3/2^{-})$ | (1) | 10911 | Γ =202 keV; Γ _p =30.0 keV | | 18256 | (1/2) | 1 | 11684 | E(level): IAR of 3320-keV, $(3/2^-)$ level in 123 Sn; L=1,2 in 122 Sn(d,p). Γ =130 keV; Γ p=27.0 keV E(level): Possibly IAR of 4008-keV level in 122 Sn(d,p). | [†] From E(p)(c.m.)+S(p), where S(p)=6571.9 keV 24 (2021Wa16). Uncertainties of E(p) are 5-20 keV. [‡] From analysis of experimental cross sections and analyzing powers compared with theoretical calculations.