¹²²Sn(pol p,p) IAR 1975Ar04

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021

1975Ar04: E=7.2-12.0 MeV polarized proton beams were produced from the FN tandem Van de Graaff accelerator at Rutgers University. Target was $1000 \ \mu \text{g/cm}^2 \ 92\%-98\%$ enriched ^{122}Sn . Reaction products were detected with Si(Li) detectors. Measured $\sigma(\theta)$, analyzing powers (E, θ). Deduced resonance energies, J, π , widths, L-transfers. Comparisons with available data.

¹²³Sb Levels

Γ: From analysis of experimental cross sections and analyzing powers compared with theoretical calculations.

E(level) [†]	Jπ‡	L‡	E(p)(c.m.)	Comments
14261	3/2+	2	7689	Γ =48 keV; Γ _p =7.4 keV
14395	1/2+	0	7823	E(level): IAR of 24.6-keV, $3/2^+$ state in 123 Sn. Γ =48 keV; Γ_p =14.3 keV E(level): IAR of 150.4-keV, $1/2^+$ state in 123 Sn.
15434	5/2+	2	8862	Γ =74 keV; Γ _p =3.4 keV
15734	5/2+	2	9162	E(level): IAR of 1194.4-keV, $5/2^+$ level in 123 Sn; L=2 in 122 Sn(d,p). Γ =93 keV; Γ _p =2.7 keV E(level): IAR of 1488.8-keV, $5/2^+$ level in 123 Sn; L=2 in 122 Sn(d,p).
16932	7/2-	3	10360	Γ =94 keV; Γ _p =19.6 keV
17376	(7/2-)	(3)	10840	E(level): IAR of 2726-keV, $7/2^-$ level in 123 Sn; L=2 in 122 Sn(d,p). Γ=140 keV; Γ _p =8.0 keV E(level): IAR of 3151-keV, $(7/2^-)$ level in 123 Sn; L=3 in 122 Sn(d,p).
17563	$(3/2^{-})$	(1)	10911	Γ =202 keV; Γ _p =30.0 keV
18256	(1/2)	1	11684	E(level): IAR of 3320-keV, $(3/2^-)$ level in 123 Sn; L=1,2 in 122 Sn(d,p). Γ =130 keV; Γ p=27.0 keV E(level): Possibly IAR of 4008-keV level in 122 Sn(d,p).

[†] From E(p)(c.m.)+S(p), where S(p)=6571.9 keV 24 (2021Wa16). Uncertainties of E(p) are 5-20 keV.

[‡] From analysis of experimental cross sections and analyzing powers compared with theoretical calculations.