Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021

 $Q(\beta^{-})=11240 SY; S(n)=5380 SY; S(p)=14700 SY; Q(\alpha)=-11450 SY$ 2021Wa16

- 2010Oh02: ¹²³Rh nuclide identified in Be(²³⁸U,F) and Pb(²³⁸U,F) reactions with a ²³⁸U⁸⁶⁺ beam energy of 345 MeV/nucleon produced by the cascade operation of the RIBF accelerator complex of the linear accelerator RILAC and four cyclotrons RRC, fRC, IRC and SRC. Identification of ¹²³Rh nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments using BigRIPS fragment separator. Experiments performed at RIKEN facility. Based on A/Q spectrum and Z versus A/Q plot, 920 counts in one setting and 11 counts in another setting were assigned to ¹²³Rh isotope. (Q=charge state).
- 2015Lo04: ¹²³Rh nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10^{10} ions/s. Identification of ¹²³Rh was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹²³Rh isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique as described in 2014Xu07. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations.
- 2021Ha19: ¹²³Rh ions were produced by in-flight fission of E=345 MeV primary beam of ²³⁸U on a ⁹Be target. Fission products were analyzed and identified by the BigRIPS seperator and the ZeroDegree spectrometer, and implanted into the Advanced Implantation detector Array (AIDA) consisting of six 128x128 strips, 1-mm thick DSSDs. Neutrons were detected with the BRIKEN neutron counter array consisting of 140 ³He proportional counters. Measured β -delayed neutrons, β n(t). Deduced T_{1/2}, β -delayed neutron emission probabilities.

Structure calculations: 2019Mo01, 2017Ko24, 2016Ma12, 2015Sa14, 2014Mi23, 2013Fa08, 2003Mo09, 1997Bo24, 1997Mo25. Additional information 1.

¹²³Rh Levels

E(level)	T _{1/2}	Comments
0	42.2 ms <i>18</i>	

 $[\]Delta Q(\beta^{-}) = 890, \Delta S(n) = 500, \Delta S(p) = 640, \Delta Q(\alpha) = 640 \text{ (syst, 2021Wa16).}$

S(2n)=9080 740, S(2p)=32230 640, $Q(\beta^{-}n)=7360$ 400 (syst,2021Wa16).