92 Mo(34 S,p2n γ), 52 Cr(74 Se,p2n γ) 1989Wy02

		History	
Type Author		Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021

1989Wy02: two measurements were performed at the Daresbury Nuclear Structure Facility. In the measurement of ${}^{92}Mo({}^{34}S,p2n\gamma)$, E=150 and 155 MeV ${}^{34}S$ beam was incident on a stacked target of two 0.4 mg/cm² self-supporting foil of ${}^{92}Mo$. γ rays were detected with the TESSA3 spectrometer. Measured $\gamma\gamma$ -coin, $\gamma\gamma$ (DCO). In the measurement of ${}^{52}Cr({}^{74}Se,p2n\gamma)$, E=290 MeV ${}^{74}Se$ beam was incident on a ${}^{52}Cr$ target. Reaction products were separated using the Daresbury Recoil Separator and γ rays were detected with an array of 14 BGO-suppressed Ge detectors. Measured E γ , I γ . Deduced levels, J, π , band structures. Comparisons with shell-model calculations.

All data are from 1989Wy02.

¹²³La Levels

E(level) [†]	J ^{π#}	Comments
0+x [‡]	$(5/2^+)$	Additional information 1.
0+y b	$(9/2^+)$	Additional information 2.
$0+z^{@}$	$(11/2^{-})$	Additional information 3.
35.7+x ^{&} 3	$(3/2^+)$	
209.50+y ^a 18	$(11/2^+)$	
224.90+x ^{&} 20	$(7/2^+)$	
230.80+z [@] 20	$(15/2^{-})$	
448.73+y ^b 20	$(13/2^+)$	
549.7+x ^{&} 3	$(11/2^+)$	
634.1+z [@] 4	$(19/2^{-})$	
715.73+y ^a 24	$(15/2^+)$	
$988.0 + x^{\alpha} 5$	$(15/2^+)$	
1008.1+y ^D 3	$(17/2^+)$	
1184.2+z ^w 5	$(23/2^{-})$	
$1322.2 + y^{a} 4$	$(19/2^+)$	
$1488.0 + x^{42}$ 5	$(19/2^+)$	
1655.8+y ⁰ 4	$(21/2^{+})$	
1854.5+z [@] 7	$(27/2^{-})$	
$19/9.9 + x^{\circ}$ 6	$(23/2^+)$ $(23/2^+)$	
$2003.4 + y^{-4}$	$(25/2^+)$	
$2505.5 \pm y^{10}$ 5	$(23/2^{-})$	
$2519.5 \pm x$ 7	$(21/2^{-})$	
2021.9+2 0 2725.2+ v^a 5	$(31/2^{+})$ $(27/2^{+})$	
3153.1+x ^{&} 8	$(31/2^+)$	
3471.8+z [@] 9	$(35/2^{-})$	
3883.0+x & 9	$(35/2^+)$	
4397.5+z [@] 11	$(39/2^{-})$	
4703.4+x ^{&} 10	$(39/2^+)$	
5398.4+z [@] 12	$(43/2^{-})$	
5606.9+x ^{&} 12	$(43/2^+)$	
6471.8+z [@] 13	$(47/2^{-})$	
6587.6+x ^{&} 13	$(47/2^+)$	
7612.3+z [@] 15	(51/2-)	

⁹²Mo(³⁴S,p2nγ),⁵²Cr(⁷⁴Se,p2nγ) **1989Wy02** (continued)

¹²³La Levels (continued)

E(level) [†]	J ^{π#}
7647.1+x ^{&} 14	$(51/2^+)$
8787.8+x ^{&} 16	$(55/2^+)$
8796.6+z? [@] 17	$(55/2^{-})$
10007.1+z? [@] 19	$(59/2^{-})$

[†] From a least-squares fit to γ -ray energies. The bandhead energies are not determined (1989Wy02).

[‡] This level may correspond to the g.s., but it is not established from ¹²³La ε decay study.

[#] As given in 2003Pa41 based on measured γ (DCO) and proposed band structures, with parentheses added by the evaluator.

[@] Band(A): Band 1: $\pi 1/2[550]$, $\alpha = -1/2$.

& Band(B): Band 2: $\pi 3/2[422]$, $\alpha = -1/2$. Configuration= $\pi 1/2[420]$ with $\alpha = +1/2$ cannot be excluded (1989Wy02).

^{*a*} Band(C): Band 3: $\pi 9/2[404]$, $\alpha = -1/2$.

^b Band(c): Band 4: $\pi 9/2[404]$, $\alpha = +1/2$.

$\gamma(^{123}\text{La})$

Measured DCO ratios from 1989Wy02 are given under comments. Expected DCO ratios are ≈ 1.0 for pure dipole transitions ($\Delta J=1$) and ≈ 2.0 for pure quadrupole transitions ($\Delta J=2$).

Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	_	Comments
189.2 2	62	224.90+x	$(7/2^+)$	35.7+x	$(3/2^+)$	Q	DCO=2.05 31	
209.6 2	15 <i>3</i>	209.50+y	$(11/2^+)$	0+y	$(9/2^+)$	D	DCO=1.27 17	
224.9 2	42	224.90+x	$(7/2^+)$	0+x	$(5/2^+)$			
230.8 2	71 2	230.80+z	$(15/2^{-})$	0+z	$(11/2^{-})$	Q	DCO=1.98 14	
239.4 2	11 3	448.73+y	$(13/2^+)$	209.50+y	$(11/2^+)$	D	DCO=1.07 11	
267.0 2	11 3	715.73+y	$(15/2^+)$	448.73+y	$(13/2^+)$	D	DCO=0.87 14	
292.4 2	62	1008.1+y	$(17/2^+)$	715.73+y	$(15/2^+)$			
314.2 2	42	1322.2+y	$(19/2^+)$	1008.1+y	$(17/2^+)$			
324.8 2	14 <i>3</i>	549.7+x	$(11/2^+)$	224.90+x	$(7/2^+)$	Q	DCO=2.03 26	
333.5 2	32	1655.8+y	$(21/2^+)$	1322.2+y	$(19/2^+)$			
349.5 <i>3</i>	52	2005.4+y	$(23/2^+)$	1655.8+y	$(21/2^+)$			
359.8 <mark>&</mark> 3	5 ^{&} 2	2365.3+y	$(25/2^+)$	2005.4+y	$(23/2^+)$			
359.8 <mark>&</mark> <i>3</i>	5 ^{&} 2	2725.2+y	$(27/2^+)$	2365.3+y	$(25/2^+)$			
403.3 <i>3</i>	60 2	634.1+z	$(19/2^{-})$	230.80+z	$(15/2^{-})$	Q	DCO=2.11 18	
438.3 <i>3</i>	15 <i>3</i>	988.0+x	$(15/2^+)$	549.7+x	$(11/2^+)$	Q	DCO=2.11 39	
448.5 <i>3</i>	21	448.73+y	$(13/2^+)$	0+y	$(9/2^+)$			
491.9 <i>3</i>	16 <i>3</i>	1979.9+x	$(23/2^+)$	1488.0+x	$(19/2^+)$	Q	DCO=1.66 31	
500.0 3	18 <i>3</i>	1488.0+x	$(19/2^+)$	988.0+x	$(15/2^+)$	Q	DCO=1.71 23	
506.1 <i>3</i>	62	715.73+y	$(15/2^+)$	209.50+y	$(11/2^+)$			
539.6 <i>3</i>	17 4	2519.5+x	$(27/2^+)$	1979.9+x	$(23/2^+)$	Q	DCO=2.06 37	
550.1 3	57 <i>3</i>	1184.2+z	$(23/2^{-})$	634.1+z	$(19/2^{-})$	Q	DCO=2.20 26	
559.6 4	52	1008.1+y	$(17/2^+)$	448.73+y	$(13/2^+)$			
606.2 4	42	1322.2+y	$(19/2^+)$	715.73+y	$(15/2^+)$			
633.6 4	16 4	3153.1+x	$(31/2^+)$	2519.5+x	$(27/2^+)$	Q	DCO=2.08 37	
647.6 <i>4</i>	62	1655.8+y	$(21/2^+)$	1008.1+y	$(17/2^+)$			
670.3 4	44 <i>3</i>	1854.5+z	$(27/2^{-})$	1184.2+z	$(23/2^{-})$	Q	DCO=2.07 25	
683.4 4	62	2005.4+y	$(23/2^+)$	1322.2+y	$(19/2^+)$			
709.4 4	52	2365.3+y	$(25/2^+)$	1655.8+y	$(21/2^+)$			
720.0 4	52	2725.2+y	$(27/2^+)$	2005.4+y	$(23/2^+)$			

92 Mo(34 S,p2n γ), 52 Cr(74 Se,p2n γ)	1989Wy02 (continued)
---	----------------------

					$\gamma(^{123}La)$	(continued	<u>d)</u>
Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [@]	Comments
729.9 4	18 4	3883.0+x	$(35/2^+)$	3153.1+x	$(31/2^+)$	Q	DCO=2.11 35
767.4 <i>4</i>	39 <i>3</i>	2621.9+z	$(31/2^{-})$	1854.5+z	$(27/2^{-})$		
820.4 5	12 4	4703.4+x	$(39/2^+)$	3883.0+x	$(35/2^+)$		
849.9 <i>5</i>	30 4	3471.8+z	$(35/2^{-})$	2621.9+z	$(31/2^{-})$	Q	DCO=2.16 27
903.5 5	8 <i>3</i>	5606.9+x	$(43/2^+)$	4703.4+x	$(39/2^+)$		
925.7 5	14 <i>3</i>	4397.5+z	$(39/2^{-})$	3471.8+z	$(35/2^{-})$	Q	DCO=1.51 33
980.7 <i>5</i>	8 <i>3</i>	6587.6+x	$(47/2^+)$	5606.9+x	$(43/2^+)$		
1000.9 5	92	5398.4+z	$(43/2^{-})$	4397.5+z	$(39/2^{-})$		
1059.5 6	52	7647.1+x	$(51/2^+)$	6587.6+x	$(47/2^+)$		
1073.4 6	11 3	6471.8+z	$(47/2^{-})$	5398.4+z	$(43/2^{-})$		
1140.5 7	11 <i>3</i>	7612.3+z	$(51/2^{-})$	6471.8+z	$(47/2^{-})$		
1140.7 8	52	8787.8+x	$(55/2^+)$	7647.1+x	$(51/2^+)$		
1184.3 ^{‡a} 8	52	8796.6+z?	$(55/2^{-})$	7612.3+z	$(51/2^{-})$		
1210.5 ^{†a} 9	42	10007.1+z?	(59/2 ⁻)	8796.6+z?	$(55/2^{-})$		

[†] Placed from a 8863.5+x, (55/2⁻) level by 2003Pa41 in ${}^{92}Mo({}^{40}Ca,2\alpha\rho\gamma)$. [‡] A 1182.3 γ placed from a 1855.9+x, (23/2⁻) level by 2003Pa41 in ${}^{92}Mo({}^{40}Ca,2\alpha\rho\gamma)$. [#] Relative to I(209.6 γ)+I(230.8 γ)+I(324.8 γ)=100 (1989Wy02). [@] From measured DCO ratios in 1989Wy02.

[&] Multiply placed with undivided intensity.

^{*a*} Placement of transition in the level scheme is uncertain.

⁹²Mo(³⁴S,p2nγ),⁵²Cr(⁷⁴Se,p2nγ) 1989Wy02

¹²³₅₇La₆₆

⁹²Mo(³⁴S,p2nγ),⁵²Cr(⁷⁴Se,p2nγ) 1989Wy02

Level Scheme (continued)

¹²³₅₇La₆₆

⁹²Mo(³⁴S,p2nγ),⁵²Cr(⁷⁴Se,p2nγ) 1989Wy02

