¹²⁴Pr εp decay (1.2 s) 1986Wi15

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021

Parent: ¹²⁴Pr: E=0.0; T_{1/2}=1.2 s 2; Q(*ε*p)=8210 *SY*; %*ε*p decay>0.0

¹²⁴Pr-T_{1/2}: From 1986Wi15, adopted in Adopted Levels of ¹²⁴Pr.

¹²⁴Pr-Q(ε p): From 2021Wa16, Δ Q(ε p)=450 (syst).

1986Wi15: ¹²⁴Pr source was produced via ${}^{92}Mo({}^{36}Ar,p3n\gamma)$ reaction with E=174 MeV ${}^{36}Ar$ beam provided by the LBL SuperHILAC. Fragments were separated with the isotope separator OASIS. Measured E γ , E(x ray), γ (t), (x ray)-proton-coin, γ -proton-coin.

Ce and La K x rays, γ rays of 70, 113 and 166 keV were observed in coincidence with the protons but the γ transitions cannot be uniquely placed since the level scheme of ¹²³La is not known (1986Wi15). γ rays of 66, 113 and 178 keV are seen and assigned to 123 La in 123 Ce ε decay (1988GeZR).

$\gamma(^{123}\text{La})$

Eγ

x70 x113

*x*166

 $x \gamma$ ray not placed in level scheme.