		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021

Parent: ¹²³Cd: E=140.65 *12*; $J^{\pi}=11/2^{(-)}$; $T_{1/2}=1.80$ s *3*; $Q(\beta^{-})=6015 \ 20$; $\%\beta^{-}$ decay=100.0

¹²³Cd-J^{π},T_{1/2}: From Adopted Levels of ¹²³Cd.

¹²³Cd-Q(β^{-}): From 2021Wa16.

- 1989Hu03: source of ¹²³Cd was produced via the U(n,F) reaction with fast neutrons produced from the Be(d,n) reaction at the TANDAR Laboratory. Fission products were separated by an electro-magnetic mass separator. γ rays were detected with two HPGe detectors (FWHM=1.95 keV at 1.33 MeV). Measured E γ , I γ , $\gamma\gamma$ -coin, γ (t). Deduced levels, J, π , parent T_{1/2}, β -decay branching ratios, log *ft*. Systematics of neighboring odd-mass In isotopes. Comparisons with theoretical calculations.
- 1986Ho24: source of ¹²³Cd was produced via ²³⁵U(n,F) with neutrons provided by the R2-0 reactor at Studvik. Fission products were separated by the mass separator OSIRIS. γ rays were detected with Ge detectors. Conversion electrons were detected with a small high-resolution Si detector. Measured E γ , I γ , $\gamma\gamma$ -coin, γ (t). Deduced levels, J, π , parent T_{1/2}, β -decay branching ratios, log *ft*. Systematics of neighboring odd-mass In isotopes.

Others: 1973BaUR, 1981Ru07, 1986Ma42, 1987Sp09, 2014TeZY.

The decay scheme is that proposed by 1989Hu03. Fast-neutron fission favors high-spin isomer. γ -rays were distinguished by comparing the results from 1986Ho24. Decay scheme from 1986Ho24 is mixed from decays of g.s. and isomer. There are some discrepancies between the level scheme from 1989Hu03 and from 1986Ho24. The evaluator has adopted the g.s. decay scheme from 1989Hu03. However, there are many unplaced γ rays, as well as a large gap between the highest level and Q-value, therefore, the decay scheme is considered as incomplete and the deduced β -feedings and log *ft* as approximate.

¹²³ In Le	vels
----------------------	------

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	E(level) [†]	$J^{\pi \ddagger}$
0.0	$9/2^{+}$	6.15 s 27	2136.64 4	$(1/2^+, 3/2^+)$
327.24 5	1/2-	47.4 s 8	2178.82 9	$(11/2^{-})$
698.55 4	$(3/2)^{-}$		2185.7 4	
1027.511 24	$(11/2^+)$		2268.03 <i>3</i>	$(11/2^{-})$
1052.28 <i>3</i>	$(5/2^+)$		2309.69 4	$(11/2^{-}, 13/2^{-})$
1137.56 5	$(3/2^{-}, 5/2^{-})$		2354.69 4	$(11/2^{-})$
1165.858 23	$(13/2^+)$		2393.32 4	$(5/2^+)$
1473.89 11			2461.53 7	$(9/2^{-}, 11/2^{-})$
1512.12 <i>3</i>	$7/2^+, 9/2^+$		2500.91 4	$(9/2^{-}, 11/2^{-})$
1566.24 4	$(9/2^+)$		2529.47 <i>3</i>	$(11/2^{-}, 13/2^{-})$
2020.64 3	$(7/2^{-})$		2602.24 7	$(9/2^{-}, 11/2^{-})$
2101.01 4	$(11/2^{-}, 13/2^{-})$		2617.87 6	$(11/2^{-}, 13/2^{-})$
2102.78 5	(9/2-,11/2-)		2723.60 6	$(11/2^{-}, 13/2^{-})$

[†] From a least-squares fit to γ -ray energies. $\Delta E \gamma = 0.5$ keV is assumed in the fitting procedure, if not given.

[‡] From Adopted Levels.

β^{-} radiations

The γ +ce intensity balances at 1137.6, 2020.6 and 2393.3 levels could indicate β feedings to these levels, which however is

unlikely since $\Delta J \ge 2$. It is most likely that these levels are fed by undetected γ rays from observed or unobserved higher levels due to Pandemonium effect.

For γ +ce intensity from 2185.7 level, it is uncertain whether it is from β feeding or from undetected γ rays from higher levels.

¹²³Cd β^- decay (1.80 s) 1989Hu03 (continued)

				β^- radiations (conti	nued)	
		+#	+			
E(decay)	E(level)	$I\beta^{-+\mu}$	Log ft*		Comments	
(3432 20)	2723.60	1.56 21	5.6 1	av Eβ=1580 16		
(3538 20)	2617.87	1.71 <i>11</i>	5.66 3	av Eβ=1630 <i>16</i>		
(3553 20)	2602.24	12.2 7	4.81 <i>3</i>	av Eβ=1637 <i>16</i>		
(3626 20)	2529.47	14.9 7	4.76 <i>3</i>	av Eβ=1672 <i>16</i>		
(3655 20)	2500.91	13.9 6	4.81 <i>3</i>	av Eβ=1685 <i>16</i>		
(3694 20)	2461.53	9.2 6	5.01 3	av Eβ=1704 16		
(3801 20)	2354.69	6.2 6	5.2 1	av Eβ=1754 <i>16</i>		
(3846 20)	2309.69	5.3 4	5.3 1	av Eβ=1776 <i>16</i>		
(3888 20)	2268.03	10.5 6	5.04 3	av Eβ=1796 <i>16</i>		
(3977 20)	2178.82	11.0 7	5.07 <i>3</i>	av Eβ=1838 <i>16</i>		
(4053 20)	2102.78	5.2 9	5.4 1	av Eβ=1874 <i>16</i>		
(4589 20)	1566.24	1.22 13	6.3 <i>1</i>	av Eβ=2128 16		
(4990 20)	1165.858	2.3 17	6.2 4	av Eβ=2318 16		
(5128 20)	1027.511	2.2 17	6.2 4	av Eβ=2384 16		

[†] From γ +ce intensity imbalance at each level. Quoted values should be considered as approximate due to incomplete decay scheme.

[±] Quoted values should be considered as approximate due to incomplete decay scheme.

[#] Absolute intensity per 100 decays.

 $\gamma(^{123}\text{In})$

Iy normalization: From $\Sigma I(\gamma + ce \text{ to g.s.} + 327) = 100$, assuming no β feeding to g.s. and 327 level.

Eγ [‡]	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.&	α^{\dagger}	Comments
75.81#	2.40 24	2178.82	(11/2 ⁻)	2102.78	(9/2 ⁻ ,11/2 ⁻)	M1	1.124	$\alpha(K)=0.972 \ 14; \ \alpha(L)=0.1235 \\ 18; \ \alpha(M)=0.0240 \ 4 \\ \alpha(N)=0.00439 \ 7; \\ \alpha(O)=0.000323 \ 5 $
77.60 [#]	1.56 16	2178.82	(11/2 ⁻)	2101.01	(11/2 ⁻ ,13/2 ⁻)	M1	1.051	α (K)=0.909 <i>13</i> ; α (L)=0.1154 <i>17</i> ; α (M)=0.0224 <i>4</i> α (N)=0.00410 <i>6</i> ; α (O)=0.000302 <i>5</i>
84.7 <i>4</i>	0.20 10	2185.7		2101.01	$(11/2^{-}, 13/2^{-})$			
107.1 <i>3</i>	0.14 5	2461.53	$(9/2^{-}, 11/2^{-})$	2354.69	$(11/2^{-})$			
138.38 10	0.87 15	1165.858	$(13/2^+)$	1027.511	$(11/2^+)$			
174.79 6	2.2 3	2529.47	$(11/2^{-}, 13/2^{-})$	2354.69	$(11/2^{-})$			
193.4 <i>4</i>	0.42 18	2723.60	$(11/2^{-}, 13/2^{-})$	2529.47	$(11/2^{-}, 13/2^{-})$			
207.12 10	1.35 25	2309.69	$(11/2^{-}, 13/2^{-})$	2102.78	$(9/2^{-}, 11/2^{-})$			
^x 226.36 9	0.60 7							
256.69 5	0.23 2	2393.32	$(5/2^+)$	2136.64	$(1/2^+, 3/2^+)$			
261.5 5	0.93 10	2529.47	$(11/2^-, 13/2^-)$	2268.03	$(11/2^{-})$			
292.90 <i>10</i>	0.41 4	2602.24	(9/2 ,11/2)	2309.69	(11/2 ,13/2)			
~299.90 20	0.18 3	0054 (0	(11/0-)	2020 (4	(7/2-)			
334.03 5	0.788	2354.69	(11/2)	2020.64	(1/2)			
353.63 /	0.05 2	1052.28	$(5/2^{+})$	698.55	(3/2)	M1	0.01517	(12) 0.01210 10
5/1.32 3	0.89 3	098.33	(3/2)	327.24	1/2	IVI I	0.01517	$\alpha(\mathbf{K})=0.01319 \ 19;$ $\alpha(\mathbf{L})=0.001608 \ 23;$ $\alpha(\mathbf{M})=0.000311 \ 5$ $\alpha(\mathbf{N})=5.71\times10^{-5} \ 8;$

Continued on next page (footnotes at end of table)

¹²³Cd β^- decay (1.80 s) **1989Hu03** (continued)

γ ⁽¹²³In) (continued)</sup>

${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\ddagger a}$	E _i (level)	J^{π}_i	E_f	J_f^π	Comments
						$\alpha(O)=4.27\times10^{-6} 6$ E _v : other: 371.2 2 (1981Ru07).
428.41 <i>3</i>	7.3 4	2529.47	$(11/2^{-}, 13/2^{-})$	2101.01	$(11/2^{-}, 13/2^{-})$	
$438.68^{\textcircled{0}}{5}$	0.24 3	1137.56	$(3/2^{-}, 5/2^{-})$	698.55	$(3/2)^{-}$	
454.25 5	0.69 7	2020.64	$(7/2^{-})$	1566.24	$(9/2^+)$	
^x 459.55 6	0.47 6					
480.28 3	1.34 10	2500.91	$(9/2^{-}, 11/2^{-})$	2020.64	$(7/2^{-})$	
515.0 5	0.62 4	2617.87	$(11/2^{-}, 13/2^{-})$	2102.78	$(9/2^{-}, 11/2^{-})$	
^x 646.0 <i>3</i>	0.20 4					
^x 672.09 15	0.19 5					
^x 684.25 20	0.17 5					
810.29 3	0.71 5	1137.56	$(3/2^{-}, 5/2^{-})$	327.24	1/2-	
827.23 25	0.02 1	2393.32	$(5/2^+)$	1566.24	$(9/2^+)$	
881.17 5	0.36 7	2393.32	$(5/2^+)$	1512.12	$7/2^+, 9/2^+$	
883.0 9	0.54 1	2020.64	(1/2)	1137.56	(3/2, 5/2)	E (1 025.2.2 (1001D 07)
935.10 3	10.4 0	2101.01	(11/2, 13/2)	1105.858	$(13/2^{+})$	E_{γ} : other: 935.2 2 (1981Ru07).
987.60 10	1.2.3	2461.53	(9/2, 11/2)	14/3.89	7/2 + 0/2 +	
988.75 10	4./ 3	2500.91	(9/2, 11/2) $(1/2^+, 2/2^+)$	1312.12	$(2/2^{-}, 9/2^{-})$	
999.12 13	0.02 1	2130.04	(1/2, 3/2)	1157.30	(3/2, 3/2)	
1012.91 10	1.95 25	2170.02	(11/2) $(11/2^+)$	0.0	(13/2)	$E : other: 1027.6.2 (1081 R \mu 07)$
1027.30 3	0.30.3	1052 28	(11/2) $(5/2^+)$	0.0	$9/2^+$	E_{γ} . outer. 1027.0 2 (1901Ru07).
1084 32 3	0.07 1	2136 64	$(1/2^+ 3/2^+)$	1052.28	$(5/2^+)$	
1102.20.3	3.03 21	2268.03	$(1/2^{-})$	1165.858	$(13/2^+)$	
1143.84 15	1.10 23	2309.69	$(11/2^-, 13/2^-)$	1165.858	$(13/2^+)$	
1150.8 6	0.41 21	2178.82	$(11/2^{-})$	1027.511	$(11/2^+)$	
1165.86 3	25.2 15	1165.858	$(13/2^+)$	0.0	9/2+	E_{γ} : other: 1165.8 3 (1981Ru07).
^x 1177.70 20	0.23 2					
1188.79 9	0.46 6	2354.69	$(11/2^{-})$	1165.858	$(13/2^+)$	
1240.48 <i>3</i>	7.9 5	2268.03	$(11/2^{-})$	1027.511	$(11/2^+)$	E_{γ} : other: 1240.5 <i>3</i> (1981Ru07).
1255.65 5	0.22 1	2393.32	$(5/2^+)$	1137.56	$(3/2^{-}, 5/2^{-})$	
^x 1275.7 4	0.88 7					
1282.19 4	3.30 19	2309.69	$(11/2^{-}, 13/2^{-})$	1027.511	$(11/2^+)$	
*1307.18 5	0.73 7		(5/0+)	1050 00	(5.12+)	
1341.06 5	0.27 2	2393.32	$(5/2^{+})$	1052.28	$(5/2^+)$	
1303.04 3	4.6 3	2529.47	(11/2, 13/2)	1105.858	$(13/2^{+})$ $(2/2)^{-}$	
1450.15 5	1.00.10	2130.04	$(1/2^{-}, 3/2^{-})$ $(11/2^{-}, 12/2^{-})$	1165 959	(3/2) $(12/2^+)$	
1452.005	1.09 10	2017.87	(11/2 ,13/2)	1105.656	(13/2)	
14/3.770 3	1.230 8	14/3.89		0.0	9/2	
1473.77 ⁰ <i>3</i>	7.2 ⁰ 5	2500.91	$(9/2^{-},11/2^{-})$	1027.511	$(11/2^+)$	
1502.13 15	0.31 5	2529.47	$(11/2^{-}, 13/2^{-})$	1027.511	$(11/2^+)$	
1512.09 3	4.6 3	1512.12	$7/2^+, 9/2^+$	0.0	9/2+	
1557.74 5	1.14 9	2723.60	(11/2, 13/2)	1165.858	$(13/2^+)$	
1500.09 5	1.93 10	1500.24	$(9/2^+)$	0.0	$9/2^{-1}$	
1094.81 3	0.555	2393.32	$(3/2^{+})$ $(1/2^{+}, 2/2^{+})$	227.24	(3/2)	
x2000 08 15	0.05 I	2150.04	(1/2, 3/2)	327.24	1/2	
2009.08 15	1 24 10	2020 64	$(7/2^{-})$	0.0	9/2+	
2102.81.5	12.3.7	2102 78	$(9/2^{-})$	0.0	$9/2^+$	
x2111.29 6	1.44 12	2102.10	()[2,11]2)	0.0	~1 -	
x2151.52 20	0.14.3					
2178.98 15	0.28 4	2178.82	$(11/2^{-})$	0.0	9/2+	
2268.09 10	0.53 6	2268.03	$(11/2^{-})$	0.0	9/2+	
x2308.41 15	0.49 7		/		-	
2354.74 6	7.3 4	2354.69	$(11/2^{-})$	0.0	9/2+	

Continued on next page (footnotes at end of table)

¹²³Cd β^- decay (1.80 s) 1989Hu03 (continued)

$\gamma(^{123})$	In)	(contin	ued

E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$
2393.46 15	0.06 1	2393.32	$(5/2^+)$	0.0 9/2+
^x 2408.16 7	1.9 6			
2461.50 7	7.9 5	2461.53	(9/2-,11/2-)	0.0 9/2+
2500.44 [@] 9	0.62 6	2500.91	$(9/2^{-}, 11/2^{-})$	$0.0 \ 9/2^+$
2601.98 8	11.8 7	2602.24	$(9/2^{-}, 11/2^{-})$	$0.0 \ 9/2^+$
x3077.7.3	0.15.3			

[†] Additional information 1.

[‡] From 1989Hu03, unless otherwise noted. Values are also available in the decay schemes in 1986Ho24 but no tabulated data are given.

[#] From 1986Ho24.

^(a) Poor fit. Uncertainty are increased to 0.2 keV in the fitting procedure.

[&] As given in the decay scheme in 1986Ho24 based on ce data. The same values are adopted in Adopted Gammas. No explicit ce data is given by 1986Ho24.

^{*a*} Absolute intensity per 100 decays.

^b Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

Decay Scheme

Decay Scheme (continued)

Decay Scheme (continued)

7