¹²³In IT decay (1.4 μs) 2004Sc42

		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021	

Parent: ¹²³In: E=2078.1 6; J^{π} =(17/2⁻); $T_{1/2}$ =1.4 µs 2; %IT decay=100.0

2004Sc42: ¹²³In isomer was produced via the thermal-neutron induced fission of ²³⁹Pu and ²⁴¹Pu. Fission fragments were separated by the LOHENGRIN mass spectrometer according to their mass to ionic charge ratios and detected in a ΔE gas detector. γ rays were detected with two large-volume Ge detectors and x rays and conversion electrons were detected with two Si(Li) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma$ -coin, E(ce), γ (t). Deduced levels, J, π , T_{1/2}. Comparisons with shell-model calculations.

¹²³In Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments			
0.0	9/2+					
1027.5 3	$(11/2^+)$					
1165.9 <i>3</i>	$(13/2^+)$					
2046.6 <i>3</i>	(13/2 ⁻)		J^{π} : the simultaneous feeding of the 11/2 ⁺ and 13/2 ⁺ levels at 1027.5 and 1165.9, respectively, (and no feeding to 9/2 ⁺ g.s. and 11/2 ⁺ level at 1027.5), suggests a spin and parity assignment 13/2 ⁻ or 15/2 ⁺ for this level. The negative parity assignment is preferred by analogy with the heavier In isotopes, but a positive parity cannot be completely ruled out (2004Sc42).			
2078.1 6	(17/2 ⁻)	1.4 µs 2	J^{π} : proposed by 2004Sc42 based on 31.5 γ probably (E2) to (13/2 ⁻). T _{1/2} : from 880.7 γ (t)+1166.0 γ (t) (2004Sc42).			

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels. Assignments for excited states are adopted from this study as proposed by 2004Sc42, based on systematics of neighboring odd-mass In isotopes and γ decay pattern.

$\gamma(^{123}\text{In})$

I γ normalization: From I(880.7 γ)+I(1019.0 γ)=100.

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	Comments
31.5 5	1.01	2078.1	$(17/2^{-})$	2046.6	$(13/2^{-})$	(E2)	105	$\alpha(K)=20.1 \ 6; \ \alpha(L)=69.4 \ 21; \ \alpha(M)=14.1 \ 5$
								E_{γ} : from energy of conversion electron, observed in delayed ce spectrum with electron energy of 27.5 5
								corresponding to $ce(L)$ line of 31.5 γ .
								I_{γ} : from $I(\gamma+ce)$ intensity balance, $I(889.7\gamma)=107$, an di $(1019.0\gamma)=40$.
								Mult.: suggested by the absence of crossover transition between 2078 level and 1166 level.
(138.5)		1165.9	(13/2+)	1027.5	(11/2 ⁺)			E_{γ} : from level-energy difference. This γ -ray was not observed by 2004Sc42 due to its low expected relative intensity of ≈ 6 .
880.7 2	107	2046.6	$(13/2^{-})$	1165.9	$(13/2^+)$			
1019.0 3	40	2046.6	$(13/2^{-})$	1027.5	$(11/2^+)$			
1027.4 3	42	1027.5	$(11/2^+)$	0.0	9/2+			
1166.0 3	100	1165.9	$(13/2^+)$	0.0	9/2+			

 † For absolute intensity per 100 decays, multiply by 0.68.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹²³₄₉In₇₄