116 Cd(14 N, α 3n γ)	2006Wa05
--	----------

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021					

2006Wa05 (also 2004Wa16, 2009Zh19): E=65 MeV ¹⁴N beam was produced from the FN tandem accelerator at the Niels Bohr Institute. Target was 0.82 mg/cm² ¹¹⁶Cd foil on a 1 mg/cm² Au backing. γ rays were detected with the NORDBALL detector array consisting of 19 anti-Compton HPGe detectors and a low energy photon spectrometer (LEPS) detector. Measured Eγ, Iγ, γγ-coin, γγ(ADO). Deduced levels, J, π, band structures, configurations. Comparisons with theoretical calculations.
All data are from 2006Wa05, unless otherwise stated.

	0		0				0
E(level) [†]	J^{π}	E(level) [†]	J^{π}	E(level) [†]	J^{π}	E(level) [†]	J ^π @
0.0 ^C	5/2+	1602.3 <mark>8</mark> 7	$(15/2^+)$	2876.4 ^{‡i} 9	$21/2^+$	4326.8 ^b 12	31/2-
138.4 ^{<i>a</i>} 3	7/2+	1690.1 ^{<i>f</i>} 6	$15/2^{+}$	2936.7 <mark>°</mark> 8	$21/2^+$	4542.3 ^h 10	$(31/2^+)$
474.2 ^d 4	7/2+	1791.1 ^d 7	$15/2^+$	3083.6 ^h 7	$23/2^+$	4606.2 [‡] 16	$29/2^+$
552.2 <mark>&</mark> 4	9/2+	1871.3 ^{&} 6	$17/2^+$	3200.4 ^{‡i} 8	$23/2^+$	4699.7 ^{‡i} 13	$(31/2^+)$
641.2 ^e 4	9/2+	2016.0 <mark>8</mark> 7	$(17/2^+)$	3324.5 ^h 8	$25/2^+$	4901.6 ^h 11	$(33/2^+)$
670.9 ^C 3	9/2+	2039.7 <mark>b</mark> 9	19/2-	3337.2 ^d 14	$(23/2^+)$	5001.3 ^b 13	35/2-
793.9 ^a 5	$11/2^{+}$	2082.0 ^e 7	$17/2^{+}$	3393.1 ^f 8	$23/2^+$	5592.1 ^b 14	39/2-
943.4 <mark>b</mark> 5	$11/2^{-}$	2282.3 ^c 8	$(17/2^+)$	3490.5 ^{‡i} 8	$25/2^+$	5819.1 ^h 12	$(37/2^+)$
972.2 <mark>5</mark> 6	$11/2^{+}$	2361.9 <mark>8</mark> 7	$(19/2^+)$	3512.3 ^b 11	$27/2^{-}$	6424.0 ^b 15	$41/2^{-}$
1079.9 ^d 5	$11/2^+$	2466.4 ^{<i>a</i>} 7	$19/2^{+}$	3688.2 [‡] 12	$25/2^+$	6776.8 ^b 15	43/2-
1156.1 ^{&} 5	$13/2^{+}$	2500.8^{f} 7	$19/2^{+}$	3716.5 ^h 8	$27/2^+$	6863.1 ^{#h} 16	$(41/2^+)$
1315.3 ^e 6	$13/2^{+}$	2614.0 ^b 10	$23/2^{-}$	3861.7 ^e 9	$25/2^+$	7030.0 18	
1436.5 [°] 6	$(13/2^+)$	2647.9 ^d 9	$19/2^{+}$	3903.7 ^{‡i} 9	$(27/2^+)$	7179.0 18	
1452.9 ^b 7	$15/2^{-}$	2659.7 <mark>8</mark> 9	$(21/2^+)$	4055.3 ^h 9	$29/2^+$	7767.6 ^b 16	$45/2^{-}$
1576.5 ^a 6	$15/2^{+}$	2712.2 ^{&} 7	$21/2^+$	4250.6 ^{‡i} 10	$(29/2^+)$		

¹²³I Levels

[†] From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 1$ keV when not stated for fitting purpose only.

[‡] Level from 2009Zh19.

[#] 1044.0 γ is placed from the 5945 level in Adopted Gammas, instead of a level at 6863 proposed by 2006Wa05.

^(a) As proposed in 2006Wa05 and 2009Zh19, based on measured $\gamma\gamma$ (ADO), band assignments and known assignments for low-lying states. When considered in Adopted Levels, assignments of spin and/or parity will be placed inside parenthesis by the evaluator if there is no firm evidence.

- & Band(A): $\pi 7/2[404]$ oblate band, $\alpha = +1/2$.
- ^{*a*} Band(a): $\pi 7/2[404]$ oblate band, $\alpha = -1/2$.
- ^{*b*} Band(B): $\pi 1/2[550]$ band.
- ^{*c*} Band(C): $\pi 5/2[413]$ band, $\alpha = +1/2$.
- ^{*d*} Band(c): $\pi 5/2[413]$ band, $\alpha = -1/2$.
- ^{*e*} Band(D): $\pi 9/2[404]$ band, $\alpha = +1/2$.
- ^f Band(d): $\pi 9/2[404]$ band, $\alpha = -1/2$.
- ^g Band(E): Dipole band based on $(15/2^+)$.
- ^{*h*} Band(F): $\pi g_{7/2} \otimes \nu h_{11/2}^2$.

^{*i*} Band(G): Possible $\pi g_{7/2} \otimes v h_{11/2}^2$. Possible chiral partner of $\pi g_{7/2} \otimes v h_{11/2}^2$ band based on 3084, 23/2⁺.

¹¹⁶Cd(¹⁴N, α 3n γ) **2006Wa05** (continued)

$\gamma(^{123}I)$

 $R(ADO)=I\gamma(37^{\circ})/I\gamma(79^{\circ})$, with I γ the total coincidence intensity observed at each angle. Measured values of R(ADO) are given under comments. Typical values of ≈ 1.4 and ≈ 0.7 correspond to $\Delta J=2$, stretched quadrupole and $\Delta J=1$, dipole, respectively (2006Wa05).

E_{γ}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
119.0 10	<2	670.9	9/2+	552.2	9/2+		
124		3324.5	25/2+	3200.4	$23/2^{+}$		
138.2.5	83.6	138.4	$\frac{23}{2}^{+}$	0.0	$5/2^+$	D	R(ADO)=0.89 13.
196.8.5	41	670.9	$9/2^+$	474.2	$7/2^+$	D	R(ADO)=0.90~22.
226		3716.5	27/2+	3/00 5	25/2+		
240.8.5	51	3324.5	25/2+	3083.6	23/2+		
240.0 5	61	793.9	$\frac{23/2}{11/2^+}$	552.2	$9/2^+$	D	R(ADO)=0.67.22
245 5 10	<2	2712.2	$\frac{11/2}{21/2^+}$	2466.4	$19/2^+$	D	R(11DO)=0.07 22.
272.3 5	81.5	943.4	$\frac{21}{2}$ $\frac{11}{2}$	670.9	$9/2^+$	D	R(ADO)=0.77 10.
290		3/90 5	25/2+	3200 /	23/2+	_	
290	~2	1871.3	$\frac{25/2}{17/2^+}$	1576.5	15/2+		
294.5 10	82	2659.7	$(21/2^+)$	2361.9	$(10/2^+)$	D	$R(\Delta DO) = 0.97.20$
201	02	2000.4	(21/2)	2007.	(1)/2	D	$R(1100) = 0.07 \ 20.$
324	27.2	3200.4	$\frac{23}{2^+}$	28/6.4	$21/2^{+}$	D	P(ADO) = 0.02 IS
330.8 3	212	972.2	$\frac{11}{2}$	041.2	$9/2^{+}$	D	R(ADO)=0.95 I3.
343.3 J 245.8 5	28 2	1313.5	$\frac{15}{2^+}$	972.2	$(17/2^+)$	D	$R(ADO) = 0.09 \ 12.$
545.85	51	2301.9	(19/2)	2010.0	(17/2)	D	R(ADO)=0.90 19.
3471		4250.6	$(29/2^{+})$	3903.7	$(2^{7}/2^{+})$		
352.8 5	5 2	6776.8	$43/2^{-}$	6424.0	$41/2^{-1}$		
356.8 10	<3	1436.5	$(13/2^+)$	10/9.9	11/2	D	
362.3 5	81	1150.1	$\frac{13}{2^{+}}$	793.9	$11/2^{+}$	D	$R(ADO) = 0.74 \ 18.$
3/1.3 3	20.2	3083.0	$\frac{25}{2}$	1215.2	$\frac{21}{2}^{+}$	D	R(ADO) = 0.72 19. P(ADO) = 0.88 16
3/4.8 J 201 2 5	20 2	042.4	$\frac{13}{2}$ $\frac{11}{2}$	552.2	$\frac{15}{2}$	D	$R(ADO)=0.88\ 10.$
301.8.5	21 J 16 2	2082.0	$\frac{11/2}{17/2^+}$	1600 1	9/2 15/2 ⁺	D	$R(ADO) = 0.77 \ 13.$ $P(ADO) = 0.02 \ 11$
302 0 10	10 Z	2082.0	$\frac{17/2}{27/2^+}$	3324.5	25/2+	D	R(ADO) = 0.92 11.
107 [†]	<5	2400.5	21/2	2002 (23/2		
407	-0	3490.5	25/2	3083.6	$\frac{23}{2}$	(D)	P(ADO) = 0.5(-1)
409.0 10	<2	10/9.9	11/2	670.9	9/2	(D)	R(ADO)=0.50 18.
413 '		3903.7	$(27/2^+)$	3490.5	25/2+	_	
413.5 5	92	2016.0	$(17/2^+)$	1602.3	$(15/2^+)$	D	R(ADO)=0.86 17.
413.8 5	40 4	552.2	9/2*	138.4	1/2+	D	$R(ADO)=0.59\ 10.$
418.8 5	91	2500.8	19/2	2082.0	$17/2^{+}$	D	R(ADO)=0.93 12.
420.3 10	<3	15/6.5	$15/2^{+}$	1150.1	13/2	D	$\mathbf{P}(\mathbf{A},\mathbf{D},\mathbf{O}) = 0.02 \cdot 17$
435.8 5	/ 1	2936.7	$\frac{21}{2}$	2000.8	$19/2^{+}$	D	R(ADO)=0.92 17. R(ADO)=0.84 20
430.5 5	01	2961 7	25/2*	2930.7	$\frac{21}{2}$	D	$R(ADO)=0.84 \ 20.$ $R(ADO)=0.75 \ 22$
408.0 3	41	3801.7	23/2 7/2+	3393.1	23/2 5/2+	D	R(ADO) = 0.75 25. R(ADO) = 0.52 10
4/4.5 5		4/4.2	1/2	0.0	5/2	D	$R(ADO) = 0.32 \ 10.$
488	22.2	3200.4	23/2	2712.2	21/2	D	
502.8 5	23 2	641.2	9/21	138.4	1/21	D	$R(ADO)=0.65 \ I2.$
509.5 5	.2	1452.9	15/2	943.4	11/2		
527.8 10	< 3	670.0	$11/2^{-1}$	120 4	9/2 7/0+	D	P(ADO) = 0.67.15
JJ2.JJ	23 Z	070.9	7/2 (20/2 [±])	138.4	1/2	D	R(ADO)=0.07 13.
534	25.2	4250.6	$(29/2^+)$	3/16.5	27/2*	0	
552.3 5	35 3	552.2	9/2*	0.0	5/2-	Q	R(ADO)=1.32 24.
5/4.5 5	90 3	2614.0	23/2	2039.7	19/2	Q	Additional information 1.
+							$K(ADU)=1.52 I\delta.$
579	105 -	3903.7	$(27/2^+)$	3324.5	25/2+		
586.8 <i>5</i>	100 3	2039.7	19/2-	1452.9	15/2-	Q	R(ADO)=1.38 17.

Continued on next page (footnotes at end of table)

¹¹⁶Cd(¹⁴N,α3nγ) **2006Wa05** (continued)

$\gamma(^{123}I)$ (continued)

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
590.8 5	37 <i>3</i>	5592.1	39/2-	5001.3 35/2-	Q	R(ADO)=1.27 22.
596.0 10	<2	2466.4	$19/2^{+}$	1871.3 17/2+		
603.8 5	50 4	1156.1	13/2+	552.2 9/2+	Q	R(ADO)=1.31 20.
605.8 5	16.2	1079.9	$11/2^{+}$	474.2 7/2+	Q	$R(ADO) = 1.27 \ 21.$
606.0 <i>10</i> 612 3 5	<1 20.2	7030.0	25/2+	$6424.0 \ 41/2$ 2712 2 21/2 ⁺	0	$R(\Delta DO) = 1.27.18$
614	20 2	2400.5	25/2+	$2712.2 \ 21/2$	Q	R(ADO) = 1.27 10.
61735	81	3083.6	23/2 23/2 ⁺	28/0.4 $21/22466.4 19/2^+$	0	$R(\Delta DO) = 1.27.20$
629.8 5	61	1602.3	$(15/2^+)$	$972.2 11/2^+$	(0)	R(ADO) = 1.27 20. R(ADO) = 1.18 20.
632.8 5	51	3716.5	$27/2^+$	3083.6 23/2+	Õ	R(ADO)=1.33 23.
641.3 5	17 2	641.2	$9/2^{+}$	$0.0 \ 5/2^+$	ò	R(ADO)=1.22 22.
655.8 5	14 2	793.9	$11/2^{+}$	138.4 7/2+	Q	R(ADO)=1.28 20.
670.8 5	78 4	670.9	9/2+	$0.0 \ 5/2^+$	Q	R(ADO)=1.33 19.
671.8 5	13 2	2361.9	$(19/2^+)$	1690.1 15/2+	Q	R(ADO)=1.20 22.
674.3 5	92	1315.3	$13/2^{+}$	641.2 9/2+	Q	R(ADO)=1.38 17.
674.5 5	50 4	5001.3	35/2-	4326.8 31/2-	Q	R(ADO)=1.33 20.
689.3 10	<2	3337.2	$(23/2^+)$	2647.9 19/2+	0	P(ADO) = 1.22.24
700.8 5	51	2016.0	$(17/2^{+})$	1315.3 13/2	Q	R(ADO)=1.33 21.
704	10.0	3903.7	$(27/2^+)$	3200.4 23/2+	0	
/11.2.5	122	1/91.1	15/2 '	$10/9.9 11/2^+$	Q	$R(ADO) = 1.31 \ 24.$
713.3 3	55 4 0 1	18/1.3	$\frac{1}{2}$	$1130.1 13/2^{+}$ 072.2 $11/2^{+}$	Q	R(ADO)=1.20 19. R(ADO)=1.26 19.
730.8.5	11 2	4055.3	$\frac{13/2}{29/2^+}$	$372.2 \ 11/2$ $3324 \ 5 \ 25/2^+$	Q 0	R(ADO) = 1.20 10. R(ADO) = 1.39 21
730.0 5	112	2200.4	22/2	$2466 4 10/2^{+}$	Q	R(HDO) = 1.57 21.
755 0 10	~1	5200.4 7170.0	25/2	2400.4 19/2 $6424.0 41/2^{-1}$		
755.0 10	<1	1250.6	$(20/2^{+})$	2400 5 25/2+		
765 5 5	4.1	4230.0	$(29/2^+)$ $(13/2^+)$	$5490.5 25/2^{+}$ $670.0 0/2^{+}$		
766.8.5	71	2082.0	(13/2) $17/2^+$	1315 3 13/2+	0	R(ADO) = 1.25.16
700.00	, 1	3400.5	25/2+	1313.3 13/2	×	R(100) 1.25 10.
782 5 5	14.2	1576.5	$\frac{25/2}{15/2^+}$	793.9 11/2+	0	R(ADO) = 1.29.20
702.5 5	112	1570.5	$(31/2^+)$	3003.7 (27/2 ⁺)	X	$R(HDO) = 1.27 \pm 0.000$
810 5 5	61	4099.7 2500.8	(31/2) 10/2 ⁺	1690.1 (27/2)	0	$R(\Delta D \Omega) = 1.40.20$
814.5.5	60.3	4326.8	$\frac{19/2}{31/2^{-}}$	$3512.3 \ 27/2^{-1}$	õ	R(ADO) = 1.40 20. R(ADO) = 1.37 22.
820	000	3003.7	$(27/2^+)$	3083.6 23/2+	×	
825.8.5	51	4542.3	$(21/2^+)$ $(31/2^+)$	$3716 5 27/2^+$		
831.8 5	20 3	6424.0	$\frac{(31/2^{-})}{41/2^{-}}$	5592.1 39/2-	D	R(ADO)=0.60 17.
840.8 5	38 3	2712.2	$21/2^{+}$	1871.3 17/2+	Q	R(ADO)=1.27 20.
845.8 5	51	2282.3	$(17/2^+)$	1436.5 (13/2+)		
846.3 5	72	4901.6	$(33/2^+)$	4055.3 29/2+		
854.8 5	61	2936.7	$21/2^{+}$	2082.0 17/2+	Q	R(ADO)=1.43 17.
856.8 5	8 1	2647.9	$19/2^+$	1791.1 15/2+	Q	R(ADO)=1.4 3.
889.8 5	14.2	2466.4	19/2+	1576.5 15/2+	Q	R(ADO) = 1.32 22.
892.3 5	4 I 87 1	3393.1 2512.2	23/21	$2500.8 19/2^{+}$	Q	$R(ADO)=1.24 \ II.$ $R(ADO)=1.21 \ 20$
090.5 J 017 5 5	874 41	5512.5 5819 1	$(37/2^+)$	$2014.0 \ 25/2$ 4901 6 (33/2 ⁺)	Q	$R(ADO)=1.51\ 20.$
010	Τ1	4606.2	(37/2)	4)01.0 (<i>35/2</i>)		
910 925 3 10	~3	4000.2 3861 7	29/2+ 25/2+	2036 7 21/2+		
076	~5	2600.7	25/2+	$2950.7 \ 21/2$		
970	62	3008.2 7767 6	25/2" 15/2 ⁻	2/12.2 21/2 ⁻ 6776.8 43/2 ⁻	D	R(ADO) = 0.72 IA
1005	02	2076 4	+J/2 21/2+	$1971 2 17/2^+$	D	$K(\Delta D O) = 0.12$ 14.
1005 1	-2	28/0.4 6863 1	$\frac{21}{2^+}$	10/1.0 1/2' 5810 1 (27/2+)		E: this wis placed from the 5045 level in Adopted
1077.0 10	~4	0003.1	(71/2)	5019.1 (57/2)		Gammas.
1184.8 5	62	6776.8	43/2-	5592.1 39/2-	Q	R(ADO)=1.35 24.

Continued on next page (footnotes at end of table)

¹¹⁶Cd(¹⁴N,α3nγ) **2006Wa05** (continued)

$\gamma(^{123}I)$ (continued)

 † From 2009Zh19, intensity is not available.

[‡] Deduced by the evaluator based on measured R(ADO) ratios. Typical values of ≈ 1.4 and ≈ 0.7 correspond to $\Delta J=2$, stretched quadrupole (Q) and $\Delta J=1$, dipole (D), respectively (2006Wa05).

 $^{123}_{53}I_{70}$

116 Cd(14 N, α 3n γ) 2006Wa05

Legend

¹²³₅₃I₇₀

¹¹⁶Cd(¹⁴N, α 3n γ) 2006Wa05 (continued)

