¹¹⁰Pd(¹⁸O,p4nγ) **1997Ba56**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021

1997Ba56 (also 1997Bb12): E=75 MeV ¹⁸O beam was produced from the XTU tandem accelerator of the Laboratori Nazionali di Legnaro. γ rays were detected with the GASP array consisting of 40 large-volume Compton-suppressed Ge detectors and an inner ball of 80 BGO counters and charged particles were detected with a spectrometer consisting of 40 E- Δ E silicon-detector telescopes. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma$ (DCO), particle- $\gamma\gamma$ -coin. Deduced levels, J, π , band structure, γ -ray multipolarities. Comparisons with total Routhian surface (TRS) cranking calculations.

123]	Lev	els
------	-----	-----

E(level) [†]	J ^π @	E(level) [†]	J ^π @	E(level) [†]	J ^π @	E(level) [†]	J ^π @
0.0	5/2+	2613.4 ^{&} 8	23/2-	6424.1 9	$(41/2^{-})$	7579.0 ^{#&} 10	(45/2)
138.4 4	7/2+	3511.9 <mark>&</mark> 8	$(27/2^{-})$	6776.9 <mark>&</mark> 9	$(43/2^{-})$	7885.2 13	
671.1 4	9/2+	4326.4 <mark>&</mark> 8	$(31/2^{-})$	6783.9 11		8023.3 13	
943.6 <mark>&</mark> 7	$11/2^{-}$	5001.0 ^{&} 9	$(35/2^{-})$	7029.7 10	$(43/2^{-})$	8314.5 14	
1452.8 <mark>&</mark> 7	$15/2^{-}$	5591.9 <mark>&</mark> 9	(39/2-)	7179.2 10		8569.8 <mark>&</mark> 11	(47/2)
2039.4 ^{&} 7	$19/2^{-}$	6092.4 [‡] 13		7549.2 11		8985.0 14	

[†] From a least-squares fit to γ -ray energies.

[‡] This level perhaps decays to 5002 and 2614 levels. But the γ rays have not been observed.

[#] The order of 991γ -802 γ cascade is reversed in Adopted Gammas, resulting in a level at 7766 instead of 7579 in 1997Ba56.

[@] Proposed by 1997Ba56, based on $\gamma\gamma$ (DCO), band assignments and known assignments for low-lying states. Parenthesis are added by the evaluator due to lack of firm experimental evidence.

[&] Seq.(A): Sequence based on 943.6, $11/2^-$. Configuration= $1h_{11/2}$.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult.@	Comments
138.4 [‡]		138.4	$7/2^+$	0.0	5/2+		
245.8 5	<2	1029.1	(43/2)	0/83.9	a /a+		
272.5*	285	943.6 8214.5	$11/2^{-}$	6/1.1	9/2+		
336.0.5	<2.0 5	7885 2		8023.3 7549 2			
352.7 2	11.3 5	6776.9	$(43/2^{-})$	6424.1	$(41/2^{-})$	(D+Q)	Mult.: DCO=0.66 7.
474.1 5	3.4 <i>3</i>	8023.3		7549.2		(D)	Mult.: DCO=0.66 33.
509.2 2		1452.8	$15/2^{-}$	943.6	$11/2^{-}$	Q	Mult.: DCO=1.01 4.
519.5 5	6.9 5	7549.2		7029.7	$(43/2^{-})$	(D+Q)	Mult.: DCO=0.72 <i>19</i> .
532.7 [‡]		671.1	9/2+	138.4	7/2+		
574.0 2	95.7 14	2613.4	$23/2^{-}$	2039.4	$19/2^{-}$	Q	Mult.: DCO=1.12 4.
586.6 2	100.0 11	2039.4	19/2-	1452.8	15/2-	Q	Mult.: DCO=0.99 3.
590.9 2	42.4 8	5591.9	$(39/2^{-})$	5001.0	$(35/2^{-})$	Q	Mult.: DCO=1.23 3.
605.6 5	8.0 10	7029.7	$(43/2^{-})$	6424.1	$(41/2^{-})$	(D+Q)	Mult.: DCO=0.77 17.
671.1 [‡]		671.1	9/2+	0.0	$5/2^{+}$		
674.6 2	55.0 11	5001.0	$(35/2^{-})$	4326.4	$(31/2^{-})$	Q	Mult.: DCO=1.05 6.
691.5 5	<2	6783.9		6092.4			
755.1 5	<2	7179.2		6424.1	$(41/2^{-})$		
802.1 [#] 5	8.3 5	7579.0	(45/2)	6776.9	$(43/2^{-})$	D	Mult.: DCO=0.37 14.
814.5 2	65.1 9	4326.4	$(31/2^{-})$	3511.9	$(27/2^{-})$	Q	Mult.: DCO=1.07 4.
832.1 2	21.7 5	6424.1	$(41/2^{-})$	5591.9	(39/2 ⁻)	(D+Q)	Mult.: DCO=0.54 5.

 $\gamma(^{123}I)$

Continued on next page (footnotes at end of table)

¹¹⁰Pd(¹⁸O,p4nγ) **1997Ba56** (continued)

$\gamma(^{123}I)$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	Comments
898.5 2 961.7 5	79.1 <i>16</i> <2	3511.9 8985.0	(27/2 ⁻)	2613.4 23/2 ⁻ 8023.3	Q	Mult.: DCO=1.13 4.
990.8 [#] 5 1185.0 2	7.5 5 10.3 8	8569.8 6776.9	(47/2) (43/2 ⁻)	7579.0 (45/2) 5591.9 (39/2 ⁻)	D Q	Mult.: DCO=0.65 <i>16</i> . Mult.: DCO=1.17 <i>25</i> .

[†] From 1997Ba56, unless otherwise noted. The E γ uncertainties are 0.2 keV for strong transitions to 0.5 keV for weak transitions from a general statement in 1997Ba56. Based on that, the evaluator has assigned 0.2 keV for I γ >10 and 0.5 keV for I γ <10. Values of I γ are normalized to I γ (586.6)=100.0 *11*.

[‡] Rounded values from Adopted Gammas.

[#] The order of 991γ -802 γ cascade is reversed in Adopted Gammas, resulting in a level at 7766 instead of 7579 in 1997Ba56.

[@] From $\gamma\gamma$ (DCO) in 1997Ba56. Typical DCO ratios are ≈ 0.5 for stretched dipole ($\Delta J=1$) and ≈ 1.0 for stretched quadrupole ($\Delta J=2$), with gates on stretched quadrupole transitions.

 $^{123}_{53}I_{70}$

¹¹⁰Pd(¹⁸O,p4nγ) 1997Ba56

¹²³₅₃I₇₀