¹²³Ba ε decay **2000Gi12**

		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021	

Parent: ¹²³Ba: E=0.0; $J^{\pi}=5/2^{(+)}$; $T_{1/2}=2.4 \text{ min } 4$; $Q(\varepsilon)=5389 \ 17$; $\%\varepsilon+\%\beta^+$ decay=100.0

¹²³Ba-J^{π},T_{1/2}: From Adopted Levels of ¹²³Ba.

¹²³Ba-Q(ε): From 2021Wa16.

2000Gi12: ¹²³Ba source was produced via La(³He,X) with E=280 MeV ³He beam from the Synchrocyclotron facility at Orsay, on thick molten lanthanum metallic targets. Ions were separated by the ISOCELE2 separator and collected on aluminized mylar tape. γ rays were detected with a low-energy and high-resolution HPGe detector and a Ge detector; conversion electrons were detected with a Si detector (FWHM=2 keV). Measured E γ , I γ , E(x ray),I(x ray), $\gamma\gamma$ -coin, x- γ -coin, E(ce), I(ce), γ -ce-coin, (x ray)-ce-coin. Deduced levels, J, π , conversion coefficients, γ -ray multipolarities. Systematics of neighboring odd- mass Cs isotopes. Comparisons with theoretical calculations.

1975Ar31: ¹²³Ba source was produced via ¹¹⁴Sn(¹²C,3n) with E=65 MeV ¹²C beam provided by the U-300 cyclotron at JINR, Dubna, on a self-supporting target of ¹¹⁴Sn. γ rays were detected with a Ge(Li) detector (FWHM=0.7 keV at E γ =100 keV). Measured E γ , I γ , γ (t). Deduced levels, parent T_{1/2}.

1978Bo32: ¹²³Ba source was produced via ^{96,98}Ru(³²S,X) with E=190 MeV ³²S beam from the U-300 cyclotron at JNIR, Dubna, on enriched (over 90%) Ru targets. γ rays were detected with a high- resolution Ge(Li) spectrometer and β particles were detected with a plastic β -counter. Measured E γ , I γ , $\beta\gamma$ -coin.

Others:

1996Os04: measured E γ , $\gamma\gamma$ -coin, γ -gated β spectra. Deduced end-point energies, Q(ε).

1962Pr09: measured decay curve. Deduced parent $T_{1/2}$.

1976Be11: measured $\beta \gamma$ (t).

1975BaXJ: measured $\beta \gamma$ (t).

The decay scheme is proposed by 2000Gi12, which is considered incomplete due to a large gap between the highest observed level and the Q-value. As stated by 2000Gi12, the absolute normalization of γ -ray intensities and thus estimation of the ($\beta^+ + \varepsilon$) feeding cannot be done because the γ -intensity balance cannot be precisely estimated for the 30.6-keV level and the decay scheme is incomplete.

¹²³Cs Levels

J#‡	T _{1/2} ‡	Comments
$1/2^{(+)}$	5.86 min 10	
$(3/2^+)$		
$5/2^{(+)}$	9 ns <i>3</i>	$T_{1/2}$: adopted value from β^+ -94.6 γ (t) in 1976Be11.
$(3/2^+)$		
$5/2^{(+)}$		
$11/2^{(-)}$	1.7 s 2	
$7/2^{(-)}$		
$(7/2^+)$		
$(9/2^+)$	114 ns 5	
$(3/2^+, 5/2^+, 7/2^+)$		J^{π} : 9/2 ⁺ proposed by 2000Gi12 contradicts to 373.1 γ M1(+E2) to 5/2 ⁽⁺⁾ in 2000Gi12.
$3/2^{(-)}$		
$(3/2^+, 5/2^+)$		
$(1/2^+, 3/2^+, 5/2^+)$		
$(1/2^+, 3/2^+, 5/2^+)$		
(+)		
$(5/2^+)$		
$(5/2^+, 7/2^+, 9/2^+)$		
$(1/2 \text{ to } 7/2)^{(+)}$		
$(1/2^+, 3/2^+, 5/2^+)$		
$(3/2^{-}, 5/2^{-}, 7/2^{-})$		
$(3/2^+, 5/2^+)$		
	$\begin{array}{c} \mathbf{J}^{\pi\ddagger} \\ \hline 1/2^{(+)} \\ (3/2^+) \\ 5/2^{(+)} \\ (3/2^+) \\ 5/2^{(+)} \\ 11/2^{(-)} \\ 7/2^{(-)} \\ (7/2^+) \\ (9/2^+) \\ (3/2^+, 5/2^+, 7/2^+) \\ (3/2^+, 5/2^+) \\ (1/2^+, 3/2^+, 5/2^+) \\ (1/2^+, 3/2^+, 5/2^+) \\ (1/2^+, 3/2^+, 5/2^+) \\ (5/2^+) \\ (5/2^+) \\ (5/2^+, 7/2^+, 9/2^+) \\ (1/2^+, 3/2^+, 5/2^+) \\ (1/2^+, 3/2^+, 5/2^+) \\ (3/2^-, 5/2^-, 7/2^-) \\ (3/2^+, 5/2^+) \end{array}$	$\begin{array}{c c} J^{\pi \ddagger} & T_{1/2} \ddagger \\ \hline 1/2^{(+)} & 5.86 \text{ min } 10 \\ \hline (3/2^+) & 9 \text{ ns } 3 \\ \hline (3/2^+) & 5/2^{(+)} & 112^{(-)} & 1.7 \text{ s } 2 \\ \hline 7/2^{(-)} & 7/2^{(-)} & 114 \text{ ns } 5 \\ \hline (3/2^+, 5/2^+, 7/2^+) & 114 \text{ ns } 5 \\ \hline (3/2^+, 5/2^+, 7/2^+) & 114 \text{ ns } 5 \\ \hline (3/2^+, 5/2^+, 7/2^+) & 114 \text{ ns } 5 \\ \hline (3/2^+, 5/2^+, 7/2^+) & (1/2^+, 3/2^+, 5/2^+) \\ \hline (1/2^+, 3/2^+, 5/2^+) & (1/2 \text{ to } 7/2)^{(+)} \\ \hline (5/2^+) & (5/2^-, 7/2^-) \\ \hline (3/2^+, 5/2^+) & (3/2^-, 5/2^-, 7/2^-) \\ \hline (3/2^+, 5/2^+) & \end{array}$

Continued on next page (footnotes at end of table)

$^{123}\mathbf{Ba}\ \varepsilon$ decay 2000Gi12 (continued)

¹²³Cs Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$
817.15 20	$(3/2^+, 5/2^+)$
866.46 14	$(3/2^+, 5/2^+)$
869.7 <i>3</i>	$(5/2^+, 7/2^+, 9/2^+)$
905.43 14	$(3/2^+, 5/2^+)$
1021.68 16	$(3/2^{-})$
1048.75 22	$(3/2^+, 5/2^+)$

 † From a least-squares fit to $\gamma\text{-ray energies.}$ ‡ From Adopted Levels.

						¹²³ Ba	ε decay 200	00Gi12 (cont	tinued)
							γ ⁽¹²³	Cs)	
E_{γ} ‡	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult.&	δ^{a}	α^{\dagger}	Comments
23.2 [#] 1	#@	146.80	5/2(+)	123.52	$(3/2^+)$				
29.0 [#] 1	#@	123.52	$(3/2^+)$	94.57	$5/2^{(+)}$				
30.6 5	66 13	30.59	(3/2+)	0.0	1/2 ⁽⁺⁾				 E_γ: from 1978Bo32. Not seen in 2000Gi12. I_γ: from I_γ/I(K x-ray) ratios of 30.6γ and 63.97γ in 1978Bo32 and I(63.97γ)=16.6 <i>I</i> in 2000Gi12. I(30.6γ)/I(K x-ray)=0.10 2 (1978Bo32).
52.20 5	1.5 1	146.80	$5/2^{(+)}$	94.57	$5/2^{(+)}$				
58.30 <i>5</i>	2.7 1	214.56	7/2 ⁽⁻⁾	156.27	11/2 ⁽⁻⁾	E2		13.19	$\begin{aligned} &\alpha(\text{K}) = 5.37 \ 8; \ \alpha(\text{L}) = 6.17 \ 9; \ \alpha(\text{M}) = 1.348 \ 20 \\ &\alpha(\text{N}) = 0.271 \ 4; \ \alpha(\text{O}) = 0.0308 \ 5; \ \alpha(\text{P}) = 0.0001409 \ 20 \\ &\text{E}_{\gamma}: \ 58.3 \ 5 \ \text{from 1978Bo32}. \\ &\text{Mult.: } \ \alpha(\text{L}) \text{exp} = 4.5 \ 9; \ \text{K/L} < 1. \\ &\text{I}_{\gamma}(58.3\gamma) / \text{I}(\text{K x-ray}) = 0.004 \ 1 \ (1978Bo32). \end{aligned}$
61.70 <i>5</i>	@	156.27	11/2 ⁽⁻⁾	94.57	5/2 ⁽⁺⁾	E3		289	α (K)=22.9 4; α (L)=207 3; α (M)=47.8 7 α (N)=9.65 15; α (O)=1.066 16; α (P)=0.000570 8 Mult.: adopted assignment based on ce data in ¹²³ Cs IT decay (1981Ma01).
63.97 <i>3</i>	16.6 <i>1</i>	94.57	5/2 ⁽⁺⁾	30.59	(3/2+)	M1			E_{γ} : others: 64.1 5 from 1978Bo32, 63.9 6 (1975Ar31). I_{γ} : Other: 14 4 (1975Ar31). Mult.: $\alpha(K)\exp=3.5$ 4; K/L>9. $I_{\gamma}(63.9\gamma)/I(K_{\chi}-ray)=0.025$ 5 (1978Bo32).
67.75 5	1.1 <i>1</i>	214.56	$7/2^{(-)}$	146.80	$5/2^{(+)}$				
84.8 <i>1</i>	2.5 2	231.63	$(7/2^+)$	146.80	5/2(+)				
92.92 <i>3</i>	47 1	123.52	(3/2+)	30.59	(3/2+)	M1+E2	0.35 5		E_{γ} : other: 92.7 6 (1975Ar31). I_{γ} : other: 51 5 (1975Ar31). Mult.: α(K)exp=0.85 4; K/L=4.6 4.
94.57 3	100	94.57	5/2 ⁽⁺⁾	0.0	1/2 ⁽⁺⁾	E2		2.28	α(K)=1.434 21; α(L)=0.666 10; α(M)=0.1442 21 α(N)=0.0292 5; α(O)=0.00342 5; α(P)=3.93×10-5 6 Eγ: other: 94.5 6 (1975Ar31). Iγ: other: 100 (1975Ar31). Mult.: E2 from Adopted Gammas, based on ce data in 123Cs IT decay; E2(+M1) proposed in 2000Gi12 based on α(K)exp=1.2 1 and K/L=3 1
96.46 6	11.3 3	328.09	(9/2+)	231.63	(7/2+)	M1		0.998	$\alpha(K) = 0.855 \ 12; \ \alpha(L) = 0.1139 \ 16; \ \alpha(M) = 0.0233 \ 4$ $\alpha(N) = 0.00493 \ 7; \ \alpha(O) = 0.000686 \ 10; \ \alpha(P) = 3.36 \times 10^{-5} \ 5$ Mult: $\alpha(K) \exp - 0.66 \ 8; \ K \ J > 5$
108.1 <i>1</i>	0.7 1	231.63	(7/2 ⁺)	123.52	(3/2 ⁺)	E2		1.416	$\alpha(K)=0.950 \ 14; \ \alpha(L)=0.369 \ 6; \ \alpha(M)=0.0795 \ 12 \\ \alpha(N)=0.01615 \ 24; \ \alpha(O)=0.00191 \ 3; \ \alpha(P)=2.67\times10^{-5} \ 4 \\ Mult : \ \alpha(K)exp=1.1.2 $
116.2 <i>1</i>	43.5 5	146.80	5/2 ⁽⁺⁾	30.59	(3/2+)	M1+E2	0.77 +40-23		E _γ : other: 116.1 6 (1975Ar31). I _γ : other: 54 8 (1975Ar31). Mult.: α (K)exp=0.65 7; K/L=4.6 8.

ω

From ENSDF

 $^{123}_{55}\mathrm{Cs}_{68}$ -3

¹²³₅₅Cs₆₈-3

L

					¹²³ Ba ε de	ecay 2000	Gi12 (continued)	
γ ⁽¹²³ Cs) (continued)									
E_{γ}	I_{γ} ‡	E _i (level)	J_i^π	E_{f}	${ m J}_f^\pi$	Mult. ^{&}	δ^{a}	α^{\dagger}	Comments
120.0 <i>I</i>	20 1	214.56	7/2 ⁽⁻⁾	94.57	5/2 ⁽⁺⁾	E1		0.1320	$\alpha(K)=0.1133 \ 16; \ \alpha(L)=0.01500 \ 22; \ \alpha(M)=0.00305 \ 5 \ \alpha(N)=0.000636 \ 9; \ \alpha(O)=8.51\times10^{-5} \ 12; \ \alpha(P)=3.62\times10^{-6} \ 6 \ E_{\gamma}: \ other: \ 120.0 \ 6 \ (1975Ar31). \ I_{\gamma}: \ other: \ 27 \ 4 \ (1975Ar31). \ Mult: \ \alpha(K)=n=0 \ 11 \ 2$
123.6 <i>1</i>	54.8 5	123.52	(3/2 ⁺)	0.0	1/2 ⁽⁺⁾	M1+E2	0.19 +9-13		Function $u(r) cxp = 0.112$. E_{γ} : other: 123.5 6 (1975Ar31). I_{γ} : other: 69 6 (1975Ar31). Mult: $\alpha(K) exp = 0.412$. $K/I = 6.85$
137.0 <i>1</i>	20.5 5	231.63	(7/2+)	94.57	5/2 ⁽⁺⁾	M1(+E2)	-0.04 10		E_{γ} : other: 137.0 6 (1975Ar31). I_{γ} : other: 23 7 (1975Ar31). Mult.: α(K)exp=0.35 5; K/L=8 2. δ: from Adopted Gammas. Other: δ<0.6 from ce data in 2000Gi12.
146.8 <i>1</i>	7.3 2	146.80	5/2 ⁽⁺⁾	0.0	1/2 ⁽⁺⁾	E2		0.483	$\alpha(K)=0.357 5; \alpha(L)=0.0998 15; \alpha(M)=0.0213 3$ $\alpha(N)=0.00436 7; \alpha(O)=0.000530 8;$ $\alpha(P)=1.071\times10^{-5} 16$
201.0 <i>I</i>	53 3	231.63	(7/2+)	30.59	(3/2+)	E2		0.1636	Mult.: $\alpha(K)\exp=0.32$ 3; K/L=3.6 5. $\alpha(K)=0.1283$ 18; $\alpha(L)=0.0280$ 4; $\alpha(M)=0.00593$ 9 $\alpha(N)=0.001219$ 18; $\alpha(O)=0.0001529$ 22; $\alpha(P)=4.08\times10^{-6}$ 6 Mult.: $\alpha(K)\exp=0.13$ 1; K/L=4.7 2.
231.7 2	1.8 2	699.12 228.00	$(5/2^+, 7/2^+, 9/2^+)$	467.57	$(3/2^+, 5/2^+, 7/2^+)$ $5/2^{(+)}$				
235.5 2	3.3 3	467.57	$(3/2^+, 5/2^+, 7/2^+)$	231.63	$(7/2^+)$	M1.E2			Mult.: $\alpha(K) \exp = 0.067 \ 15$.
260.3 1	6.5 5	474.88	3/2 ⁽⁻⁾	214.56	7/2 ⁽⁻⁾	E2		0.0689	$\alpha(K)=0.0557 \ 8; \ \alpha(L)=0.01049 \ 15; \ \alpha(M)=0.00220 \ 3$
									α (N)=0.000455 7; α (O)=5.83×10 ⁻⁵ 9; α (P)=1.85×10 ⁻⁶ 3 Mult.: α (K)exp=0.063 10; K/L=5 1.
262.0 2 309.5 3 336.2 3	2.5 5 2.1 2 1.7 2	494.05 784.37 811.17	$(3/2^+, 5/2^+)$ $(3/2^-, 5/2^-, 7/2^-)$ $(3/2^+, 5/2^+)$	231.63 474.88 474.88	$(7/2^+)$ $3/2^{(-)}$ $3/2^{(-)}$				
347.3 2	10.1 8	494.05	$(3/2^+, 5/2^+)$	146.80	5/2 ⁽⁺⁾	M1+E2	>0.2		Mult.: α (K)exp=0.036 6; K/L=6 1.
351.3 <i>3</i> 370.6 <i>2</i>	0.7 <i>1</i> 35 2	474.88 494.05	$3/2^{(-)}$ $(3/2^+, 5/2^+)$	123.52 123.52	(3/2 ⁺) (3/2 ⁺)	M1		0.0257	$\alpha(K)=0.0222$ 4; $\alpha(L)=0.00285$ 4; $\alpha(M)=0.000583$
									α (N)=0.0001233 <i>18</i> ; α (O)=1.722×10 ⁻⁵ <i>25</i> ; α (P)=8.61×10 ⁻⁷ <i>13</i> Mult.: α (K)exp=0.029 <i>5</i> ; K/L>8.
373.1 2 380.3 5	18.5 5 1.3 5	467.57 474.88	$(3/2^+, 5/2^+, 7/2^+)$ $3/2^{(-)}$	94.57 94.57	5/2 ⁽⁺⁾ 5/2 ⁽⁺⁾	M1(+E2)	<1.2		Mult.: $\alpha(K) \exp = 0.025 4$.

4

 $^{123}_{55}\mathrm{Cs}_{68}$ -4

L

				123	Ba ε decay	2000	OGi12 (contin	uued)
$\gamma(^{123}Cs)$ (continued)								
E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E _i (level)	${ m J}^{\pi}_i$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^{&}	δ^{a}	α^{\dagger}	Comments
389.0 5	1.3 2	620.90	(5/2+)	231.63 (7/2+)	M1		0.0228	α(K)=0.0196 3; α(L)=0.00252 4; α(M)=0.000514 8
								α (N)=0.0001088 <i>16</i> ; α (O)=1.520×10 ⁻⁵ <i>22</i> ; α (P)=7.60×10 ⁻⁷ <i>11</i> Mult : α (K)exp=0.030 <i>10</i>
399.6 2	7.1 <i>I</i>	494.05	$(3/2^+, 5/2^+)$	94.57 5/2(+)	M1,E2			Mult.: α (K)exp=0.020 5; K/L=8 2.
401.3 2	2.0 2	524.69	$(1/2^+, 3/2^+, 5/2^+)$	$123.52 (3/2^+)$	M1			Mult.: α (K)exp=0.026 10; M1+E2 proposed in 2000Gi12.
410.8 2	13.6 2	557.51	$(1/2^+, 3/2^+, 5/2^+)$	146.80 5/2 ⁽⁺⁾	M1,E2			Mult.: α (K)exp=0.016 2; K/L=8 2.
428.3 <i>3</i>	2.0 5	1048.75	$(3/2^+, 5/2^+)$	620.90 (5/2+)	M1,E2			Mult.: $\alpha(K) \exp = 0.021 \ 10.$
441.5 <i>4</i>	2.6 5	588.52	(*)	146.80 5/2 ⁽⁺⁾				
444.5 <i>4</i>	3.0 3	474.88	$3/2^{(-)}$	30.59 (3/2+)	(E1)		0.00408	α (K)=0.00353 5; α (L)=0.000442 7; α (M)=8.98×10 ⁻⁵ 13
1								$\alpha(N)=1.89\times10^{-5}$ 3; $\alpha(O)=2.62\times10^{-6}$ 4; $\alpha(P)=1.260\times10^{-7}$ 18
								Mult.: $\alpha(K) \exp < 0.01$.
463.7 2	6.3 3	494.05	$(3/2^+, 5/2^+)$	$30.59 (3/2^+)$	M1,E2			Mult.: $\alpha(K)$ exp=0.011 3.
467.5 5	2.2.3	699.12	$(5/2^+, 7/2^+, 9/2^+)$	$231.63 (7/2^+)$				
4/4.8 5	1.6 2	620.90	$(5/2^+)$	$146.80 \ 5/2^{(+)}$	F 1		0.00224	(W) 0.00000 ((L) 0.000000 5 (0.0) 7.00 (10 ⁻⁵) L
484.2 3	6 /	699.12	(5/2*,7/2*,9/2*)	214.56 7/2	EI		0.00334	$\alpha(\mathbf{K})=0.00289\ 4;\ \alpha(\mathbf{L})=0.000360\ 5;\ \alpha(\mathbf{M})=7.32\times10^{-5}\ 11$ $\alpha(\mathbf{N})=1.542\times10^{-5}\ 22;\ \alpha(\mathbf{O})=2.13\times10^{-6}\ 3;\ \alpha(\mathbf{P})=1.033\times10^{-7}\ 15$
	_							Mult.: $\alpha(K) \exp = 0.004 \ 2.$
494.0 ^b 2	38.8 <mark>6</mark> 5	494.05	$(3/2^+, 5/2^+)$	$0.0 1/2^{(+)}$	M1,E2			Mult.: α (K)exp=0.0085 6; K/L=8 2 for a doublet.
494.0 ^b 2	38.8 <mark>b</mark> 5	588.52	(*)	94.57 5/2 ⁽⁺⁾	M1,E2			Mult.: $\alpha(K) \exp = 0.0085$ 6; K/L=8 2 for a doublet.
497.4 2	16 2	620.90	$(5/2^+)$	123.52 (3/2+)	M1,E2		0.0109 14	Mult.: $\alpha(K) \exp = 0.008 2$; K/L=6 2.
524.4 <i>3</i>	5.8 5	524.69	$(1/2^+, 3/2^+, 5/2^+)$	$0.0 1/2^{(+)}$	M1,E2			Mult.: $\alpha(K) \exp = 0.006 \ 2.$
526.5 <mark>b</mark> 5	9.0 <mark>b</mark> 5	557.51	$(1/2^+, 3/2^+, 5/2^+)$	30.59 (3/2+)	M1,E2			Mult.: $\alpha(K) \exp = 0.007 \ 2$ for a doublet.
526.5 ^b 5	9.0 ^b 5	620.90	$(5/2^+)$	94.57 5/2 ⁽⁺⁾	M1,E2			Mult.: $\alpha(K) \exp = 0.007 \ 2$ for a doublet.
541.6 <i>3</i>	6.0 5	869.7	$(5/2^+, 7/2^+, 9/2^+)$	328.09 (9/2+)	M1,E2			Mult.: $\alpha(K) \exp = 0.008 2$.
546.8 <i>3</i>	8.9 5	1021.68	$(3/2^{-})$	474.88 3/2 ⁽⁻⁾	M1,E2			Mult.: $\alpha(K) \exp = 0.009 \ 3$.
557.4 5	1.5 3	557.51	$(1/2^+, 3/2^+, 5/2^+)$	$0.0 1/2^{(+)}$				
569.8 <i>3</i>	6.0 5	784.37	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	214.56 7/2 ⁽⁻⁾	M1,E2			Mult.: α (K)exp=0.006 2.
590.4 <i>3</i>	9.2 5	620.90	$(5/2^+)$	30.59 (3/2+)	M1,E2			Mult.: α (K)exp=0.008 2; K/L=6 2.
602.8 5	4.2 5	749.64	$(1/2^+, 3/2^+, 5/2^+)$	146.80 $5/2^{(+)}$				
621.0 <i>3</i>	3.0 3	620.90	$(5/2^+)$	$0.0 1/2^{(+)}$	(E2)		0.00528	α (K)=0.00449 7; α (L)=0.000630 9; α (M)=0.0001294 19
								α (N)=2.72×10 ⁻⁵ 4; α (O)=3.69×10 ⁻⁶ 6; α (P)=1.636×10 ⁻⁷ 23 Mult.: M1,E2 from α (K)exp=0.005 2 in 2000Gi12; (E2) is assumed from level scheme.
626.3 <i>3</i>	3.0 5	749.64	$(1/2^+, 3/2^+, 5/2^+)$	123.52 (3/2+)				
633.5 5	2.5 5	728.0	$(1/2 \text{ to } 7/2)^{(+)}$	94.57 5/2(+)				
635.1 4	10.0 5	866.46	$(3/2^+, 5/2^+)$	231.63 (7/2+)				
664.5 5	1.0 5	811.17	$(3/2^+, 5/2^+)$	146.80 5/2(+)				
670.6 <i>3</i>	7.3 5	817.15	$(3/2^+, 5/2^+)$	146.80 5/2 ⁽⁺⁾	M1+E2	<2.0		Mult.: α (K)exp=0.005 1.
673.8 <i>5</i>	≈0.5	905.43	$(3/2^+, 5/2^+)$	231.63 (7/2+)				
688.1 <i>5</i>	2.5 3	811.17	$(3/2^+, 5/2^+)$	123.52 (3/2+)				
697.3 5	≈0.5	728.0	$(1/2 \text{ to } 7/2)^{(+)}$	30.59 (3/2 ⁺)				
716.6 <i>3</i>	16.1 5	811.17	$(3/2^+, 5/2^+)$	94.57 5/2 ⁽⁺⁾	M1+E2			Mult.: α (K)exp=0.0045 6; K/L \approx 7.

S

 $^{123}_{55}\mathrm{Cs}_{68}$ -5

L

$\gamma(^{123}Cs)$ (continued)

E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	Comments
718.8 ^b 3	22.5 ^b 5	749.64	$(1/2^+, 3/2^+, 5/2^+)$	30.59	$(3/2^+)$	M1(+E2)	Mult.: $\alpha(K)\exp=0.0048$ 6; K/L~8 for a doublet.
718.8 <mark>b</mark> 3	22.5 <mark>b</mark> 5	866.46	$(3/2^+, 5/2^+)$	146.80	$5/2^{(+)}$	M1(+E2)	Mult.: $\alpha(K) \exp = 0.0048$ 6; K/L ≈ 8 for a doublet.
723.1 5	≈0.5	869.7	$(5/2^+, 7/2^+, 9/2^+)$	146.80	$5/2^{(+)}$		
749.7 <i>3</i>	5.0 5	749.64	$(1/2^+, 3/2^+, 5/2^+)$	0.0	$1/2^{(+)}$		
757.8 <i>3</i>	2.1 2	905.43	$(3/2^+, 5/2^+)$	146.80	$5/2^{(+)}$		
771.8 4	1.0 3	866.46	$(3/2^+, 5/2^+)$	94.57	$5/2^{(+)}$		
780.8 <i>3</i>	6 1	811.17	$(3/2^+, 5/2^+)$	30.59	$(3/2^+)$		
782.4 <i>3</i>	3.0 3	905.43	$(3/2^+, 5/2^+)$	123.52	$(3/2^+)$		
786.8 5	0.9 2	817.15	$(3/2^+, 5/2^+)$	30.59	$(3/2^+)$		
807.1 <i>3</i>	2.5 1	1021.68	$(3/2^{-})$	214.56	$7/2^{(-)}$		
811.0 ^b 2	7.5 <mark>b</mark> 2	811.17	$(3/2^+, 5/2^+)$	0.0	$1/2^{(+)}$		
811.0 ^b 2	7.5 <mark>b</mark> 2	905.43	$(3/2^+, 5/2^+)$	94.57	$5/2^{(+)}$		
816.8 ^b 3	2.0 ^b 2	817.15	$(3/2^+, 5/2^+)$	0.0	$1/2^{(+)}$		
816.8 <mark>b</mark> 3	2.0 ^b 2	1048.75	$(3/2^+, 5/2^+)$	231.63	$(7/2^+)$		
836.2 2	2.0 2	866.46	$(3/2^+, 5/2^+)$	30.59	$(3/2^+)$		
866.5 5	2.0 5	866.46	$(3/2^+, 5/2^+)$	0.0	$1/2^{(+)}$		
874.8 5	1.3 5	905.43	$(3/2^+, 5/2^+)$	30.59	$(3/2^+)$		
^x 894.8 <i>3</i>	3.0 5						
898.0 <i>3</i>	2.7 5	1021.68	$(3/2^{-})$	123.52	$(3/2^+)$		
905.5 5	1.0 3	905.43	$(3/2^+, 5/2^+)$	0.0	$1/2^{(+)}$		
^x 932.3 5	1.7 4						
^x 956.0 5	2.9 <i>3</i>						
991.3 4	3.4 <i>3</i>	1021.68	$(3/2^{-})$	30.59	$(3/2^+)$		
1017.0 10	0.7 2	1048.75	$(3/2^+, 5/2^+)$	30.59	$(3/2^+)$		
1021.9 6	1.8 3	1021.68	$(3/2^{-})$	0.0	$1/2^{(+)}$		
1048.5 10	1.2 3	1048.75	$(3/2^+, 5/2^+)$	0.0	$1/2^{(+)}$		

[†] Additional information 1.

[‡] From 2000Gi12, unless otherwise noted.

[#] Observed only in x- γ -coin and (x ray)-ce-coin; intensity is weak (2000Gi12).

[@] Weak.

[&] From ce data (given in comments) in 2000Gi12, unless otherwise noted. The same assignments are adopted in Adopted Gammas. Some M1+E2 assignments are changed to M1,E2 (by the evaluator) when experimental conversion coefficients overlap with theoretical values of both M1 and E2.
 ^a Deduced by the evaluator from ce data in ¹²³Ba ɛ decay (2000Gi12) using the BrIccMixing code, unless otherwise noted. The same values are adopted in

^{*a*} Deduced by the evaluator from ce data in ¹²³Ba ε decay (2000Gi12) using the BrIccMixing code, unless otherwise noted. The same values are adopted in Adopted Gammas.

^b Multiply placed with undivided intensity.

 $x \gamma$ ray not placed in level scheme.

 $^{123}_{55}\text{Cs}_{68}$ -6

¹²³Ba ε decay 2000Gi12

¹²³Ba ε decay 2000Gi12

