Adopted Levels, Gammas

Туре	Author	History Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 174, 1 (2021)	15-Apr-2021
$Q(\beta^{-}) = -5389 \ 17; \ S(n) = 10970 \ 40; \ S(p) = 2978 \ 16;$	$Q(\alpha) = 309\ 25$	2021Wa16	

S(2n)=20084 19, S(2p)=9376 13 (2021Wa16).

Mass measurements: Mass excess=-81049 15 keV (1990St25), -81048 12 keV (1999Am05).

¹²³Cs Levels

 $(7/2^+)$ level in $\pi g_{7/2}$ band and $(9/2^+)$ level in $\pi g_{9/2}$ band: 1992Hu02 in $(^{19}F,4n\gamma)$ propose that the $(9/2^+)$ level (bandhead of $\pi g_{9/2}$ band) is at 296 keV (also proposed by 1979Ga02 in $(^{10}B,3n\gamma)$) and is de-excited by 201 γ and 137 γ with the latter assigned mult=E1 based on $\gamma(\theta)$ data and level scheme, and the $(7/2^+)$ level in $\pi g_{7/2}$ band is at a higher energy and linked to the 296 level by an unobserved and highly-converted low-energy transition. However, 2000Gi12 observed a preponderant M1 character for 137 γ based on their ce data from ¹²³Ba ε decay. Together with the observations of both prompt and delayed transitions of 137 γ and 201 γ in their measurement of ¹¹⁵In(¹²C,4n γ), 2000Gi12 propose that the 137 γ and 201 γ de-excite a level at 231 keV with J^{\pi}=(7/2⁺), which is fed by an isomer at 231.7+x (x a few keV) with T_{1/2}=114 ns as the $\pi g_{9/2}$ bandhead. Later, 2004Si26 in ¹⁰⁰Mo(²⁸Si,4np γ) and 2004Si27 in ⁶⁴Ni(⁶⁴Ni,4np γ) propose the 328-keV level (proposed by 2000Gi12 as a separate level) to be the isomeric (9/2⁺) bandhead, based on the intensity balance of the feeding and de-exciting γ transitions (96.5 γ and 233.5 γ de-exciting the 328-keV level are seen in 2004Si26 with a thick target but not seen in 2004Si27 with a thin target due to ¹²³Cs nuclei recoiling into vacuum after reaction and decaying out of the detectors, supporting the 328-keV level being an isomer). The level scheme adopted here is based on that of 2000Gi12, 2004Si27 and 2005Si31. Band assignments are from 2004Si27 and 2005Si31.

Cross Reference (XREF) Flags

			A B C D	¹²³ Ba æ ¹²³ Cs I ⁶⁴ Ni(⁶⁴ ⁹² Mo(³	ε decay T decay Ni,p4nγ) ⁴ S,3pγ)	E F G H	${}^{96}Zr({}^{32}S,p4n\gamma)$ ${}^{100}Mo({}^{28}Si,p4n\gamma)$ ${}^{108}Pd({}^{19}F,4n\gamma),{}^{109}Ag({}^{18}O,4n\gamma)$ ${}^{116}Sn({}^{10}B,3n\gamma),{}^{114}Sn({}^{12}C,p2n\gamma)$
E(level) [†]	J^{π}	T _{1/2}	XF	REF			Comments
0.0	1/2 ⁽⁺⁾	5.86 min 10	ABC	FGH	$\frac{\% \varepsilon + \% \beta^+}{\mu = +1.377}$	=100 7 (<mark>19</mark>	81Th06,2014StZZ)
					J^{π} : spin fr (1977E) odd-mas	om at <mark>c02,19</mark> ss Cs	omic-beam magnetic resonance on mass-separated 123 Cs 78Ek05); 1/2 ⁺ is favored from systematics of neighboring isotopes.
					T _{1/2} : unw 5.87 mi 8.0 min	eighte n 5 (1 5 (19	d average of 5.87 min 5 (1993Al03), 6.08 min 7 (1981So06), 969Ch18), and 5.6 min 1 (1966Da09). Others: 6 min (1954Ma54), 62Pr09).
					μ: from la (1981Th 2.58206	ser sp 106). (9 9 of	ectroscopy on thermal atomic beam, relative to 2.582 <i>I</i> of 133 Cs Other: 1.389 <i>I6</i> from atomic-beam magnetic resonance relative to 133 Cs (1977Ek02,1978Ek05). See also 2014StZZ compilation.
					Isotope sh to that o	ift δv^1 of ¹³³ (^{33,A} =362.6 MHz <i>14</i> (1981Th06), 259 <i>12</i> (1978Hu08), relative Cs.
					Nuclear rr	ns cha	rge radius=4.782 fm 7 (2013An02).
30.59 ¹ 4	$(3/2^+)$		ABC	FGH	J ^π : 201.0γ	E2 fi	rom $(7/2^+)$, 116.2 γ M1+E2 from 5/2 ⁽⁺⁾ , 30.6 γ to 1/2 ⁽⁺⁾ .
94.57 <i>3</i>	$5/2^{(+)}$	9 ns <i>3</i>	ABC	FGH	J^{π} : 94.6 γ	E2 to	$1/2^{(+)}$.
123.52 <i>4</i> 146.80 <i>4</i>	(3/2 ⁺) 5/2 ⁽⁺⁾		A A		$T_{1/2}$: from J^{π} : 123.6 γ J^{π} : 146.8 γ	$\beta^{+} - 2$ $\gamma M1 + 2$	94.6 γ (t) (19/6Be11) in ¹²³ Ba ε decay. E2 to $1/2^{(+)}$, 108.1 γ E2 from (7/2 ⁺). to $1/2^{(+)}$.
156.27 ^a 5	$11/2^{(-)}$	1.7 s 2	ABCI	EFGH	%IT=100		

Continued on next page (footnotes at end of table)

¹²³Cs Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
214.56 5 231.63 ^{<i>i</i>} 6 328.08 ^{<i>g</i>} 8	7/2 ⁽⁻⁾ (7/2 ⁺) (9/2 ⁺)	114 ns 5	A A C FGH A CD FGH	J^{π} : 61.7 γ E3 to 5/2 ⁽⁺⁾ ; 11/2 ⁻ from systematics of neighboring odd-mass Cs isotope; bandhead of 1h _{11/2} band. $T_{1/2}$: weighted average of 1.7 s 2 (1981Ma01) and 1.6 s 2 (1972Dr06) in ¹²³ Cs IT decay. J^{π} : 58.3 γ E2 to 11/2 ⁽⁻⁾ , 120.0 γ E1 to 5/2 ⁽⁺⁾ . J^{π} : 137.0 γ M1+E2 to 5/2 ⁽⁺⁾ ; band assignment. %IT=100 E(level): see comments above about this level as the (9/2 ⁺) bandhead. J^{π} : 96.5 γ M1 to (7/2 ⁺); bandhead of the 1g _{9/2} band. $T_{1/2}$: from γ (t) in 2000Gi12 with ¹¹⁵ In(¹² C.4n γ), in the
467.57 <i>14</i> 474.88 <i>10</i>	$(3/2^+, 5/2^+, 7/2^+)$ $3/2^{(-)}$		A A	dataset of (¹⁰ B,3n γ). J ^{π} : 236.0 γ M1,E2 to (7/2 ⁺), 373.1 γ M1(+E2) to 5/2 ⁽⁺⁾ . J ^{π} : 260.3 γ E2 to 7/2 ⁽⁻⁾ , 444.5 γ (E1) to (3/2 ⁺), 380.3 γ to 5/2 ⁽⁺⁾ .
476.76 ^{<i>a</i>} 19 494.05 9 524.69 17 557.51 18	$(15/2^{-}) (3/2^{+}, 5/2^{+}) (1/2^{+}, 3/2^{+}, 5/2^{+}) (1/2^{+}, 3/2^{+}, 5/2^{+}) (+)$	40 [‡] ps 2	CDEFGH A A A	J^{π} : 320.5 γ E2 to 11/2 ⁽⁻⁾ ; band assignment. J^{π} : 347.3 γ M1+E2 to 5/2 ⁽⁺⁾ , 370.6 γ M1 to (3/2 ⁺). J^{π} : 401.3 γ M1 to (3/2 ⁺), 524.4 γ M1,E2 to 1/2 ⁽⁺⁾ . J^{π} : 410.8 γ M1,E2 to 5/2 ⁽⁺⁾ , 557.4 γ to 1/2 ⁽⁺⁾ .
588.52 18 596.96 ^h 18	$(11/2^+)$	6.2 [#] ps 14	A CD FGH	$J^{*}: 494.0\gamma$ M1,E2 to $5/2^{(*)}$. $J^{\pi}: 268.9\gamma$ M1+E2, $\Delta J=1$ to $(9/2^{+})$; no transitions to $3/2^{+}$ and $5/2^{+}$ levels: band assignment.
620.90 <i>13</i> 659.80 ⁱ 19	$(5/2^+)$ $(11/2^+)$	18 [#] ps 3	A C FGH	J^{π} : 389.0 γ M1 to (7/2 ⁺), 621.0 γ to 1/2 ⁽⁺⁾ . J^{π} : 428.1 γ E2 to (7/2 ⁺); band assignment.
699.12 <i>18</i> 728.0 <i>4</i> 749.64 <i>17</i> 784.37 <i>22</i>	$(5/2^+, 7/2^+, 9/2^+)$ $(1/2 \text{ to } 7/2)^{(+)}$ $(1/2^+, 3/2^+, 5/2^+)$ $(3/2^-, 5/2^-, 7/2^-)$	Ĩ	A A A	$J^{\pi}: 484.2\gamma \text{ E1 to } 7/2^{(-)}.$ $J^{\pi}: 633.5\gamma \text{ to } 5/2^{(+)}, 697.3\gamma \text{ to } (3/2^{+}).$ $J^{\pi}: 749.7\gamma \text{ to } 1/2^{(+)}, 718.8\gamma \text{ M1}(+\text{E2}) \text{ to } (3/2^{+}).$ $J^{\pi}: 569.8\gamma \text{ M1,E2 to } 7/2^{(-)}, 309.5\gamma \text{ to } 3/2^{(-)}.$
811.17 <i>13</i> 817.15 20 866.46 <i>14</i>	$\begin{array}{c} (3/2^+, 5/2^+) \\ (3/2^+, 5/2^+) \\ (3/2^+, 5/2^+) \end{array}$		A A A	J^{π} : 811.0 γ to $1/2^{(+)}$, 716.6 γ M1+E2 to $5/2^{(+)}$. J^{π} : 670.6 γ M1+E2 to $5/2^{(+)}$, 816.8 γ to $1/2^{(+)}$. J^{π} : 866.5 γ to $1/2^{(+)}$, 635.1 γ to $(7/2^{+})$, 718.8 γ M1(+E2) to
869.7 3	(5/2+,7/2+,9/2+)	.#	A	$5/2^{(+)}$. J ^{π} : 541.6 γ M1,E2 to (9/2 ⁺), 723.1 γ to $5/2^{(+)}$.
900.49 ⁸ 20	$(13/2^+)$	1.8" ps 8	CD FGH	J^{n} : 572.5 γ E2 to (9/2 ⁺), 303.5 γ M1+E2, Δ J=1 to (11/2 ⁺); band assignment.
905.43 14	$(3/2^+, 5/2^+)$	a a [‡]	Α	J^{n} : 905.5 γ to $1/2^{(+)}$, 6/3.8 γ to $(1/2^{+})$.
999.074 24 1021.68 <i>16</i>	$(19/2^{-})$ $(3/2^{-})$	3.2+ ps +3-6	CDEFGH A	J^{α} : 522.4 γ E2 to (15/2 ⁻); band assignment. J^{π} : 546.8 γ M1,E2 to 3/2 ⁽⁻⁾ , 1021.9 γ to 1/2 ⁽⁺⁾ , 807.1 γ to 7/2 ⁽⁻⁾ .
1048.75 22	$(3/2^+, 5/2^+)$		A	J^{π} : 428.3 γ M1,E2 to (5/2 ⁺), 1048.5 γ to 1/2 ⁽⁺⁾ , 816.8 γ to (7/2 ⁺).
1159.6 ^{&} 3	(17/2 ⁻)		C FGH	J ^{π} : 682.6 γ D+Q, Δ J=1 to (15/2 ⁻); band assignment.
1237.24 ^{<i>h</i>} 22	(15/2 ⁺)		CD FGH	J^{π} : 640.4 γ Q to (11/2 ⁺); 336.8 γ D+Q, $\Delta J=1$ to (13/2 ⁺); band assignment.
1260.2 ^{<i>i</i>} 3	$(15/2^+)$		C FGH	J^{π} : 600.3 γ Q to (11/2 ⁺); band assignment.
1593.4 ^b 3	(19/2-)		C FGH	J^{π} : 433.6 γ D, Δ J=1 to (17/2 ⁻), 1116.6 γ to (15/2 ⁻); band assignment.
1605.16 ^g 24	(17/2+)		CD FGH	J^{π} : 704.6 γ Q to (13/2 ⁺), 367.7 γ D to (15/2 ⁺); band assignment.
1684.6 ^{<i>a</i>} 3	$(23/2^{-})$	$1.2^{+}_{\pm} \text{ ps } 6$	CDEFGH	J^{π} : 685.5 γ E2 to (19/2 ⁻); band assignment.
1729.7 ^{&} 3	$(21/2^{-})$	≤1.7 [‡] ps	C FGH	J^{π} : 730.6 γ M1+E2, ΔJ =1 to (19/2 ⁻), 570.0 γ to E2 to (17/2 ⁻); band assignment.

Continued on next page (footnotes at end of table)

¹²³Cs Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
1994.71 ^{<i>h</i>} 24	(19/2+)		CD FGH	J^{π} : 757.9 γ and 734.4 γ Q to (15/2 ⁺), 389.2 γ D to (17/2 ⁺); band assignment.
2003.7 ⁱ 3	$(19/2^+)$		C FG	J^{π} : 743.4 γ Q to (15/2 ⁺), 398.6 γ D to (17/2 ⁺); band assignment.
2196.4 <mark>b</mark> 3	$(23/2^{-})$		C FG	J^{π} : 1197.6v O to (19/2 ⁻), 466.6v to (21/2 ⁻); band assignment.
2219.6 5	$(19/2^+)$		С	J^{π} : proposed by 2004Si27 in (⁶⁴ Ni,p4ny) based on band structures.
2410.7 <mark>8</mark> 3	$(21/2^+)$		C FG	J^{π} : 805.6 γ Q to (17/2 ⁺), 406.7 γ to (19/2 ⁺); band assignment.
2436.3 <mark>&</mark> 3	$(25/2^{-})$		C FG	J^{π} : 706.8 γ Q to (21/2 ⁻), 751.7 γ D to (23/2 ⁻); band assignment.
2446.2 6	$(21/2^+)$		F	J ^{π} : proposed by 2005Si31 in (²⁸ Si,p4n γ) based on band structures.
2485.2 ^a 3	$(27/2^{-})$	0.34 ps 6	CDEFGH	J ^{π} : 800.5 γ E2 to (23/2 ⁻); band assignment.
				$T_{1/2}$: from DSAM in (³² S,p4n γ). Other: ≤ 1.4 ps from RDM in
0706 0 4	(22/2+)		с г	$(^{19}\text{F},4n\gamma).$
2706.34	$(23/2^+)$		C F	$J^*: 486.7\gamma \text{ Q to } (19/2^+), 1021.9\gamma \text{ D to } (23/2^-).$
2821.4 ⁿ 3	$(23/2^{+})$		C FG	J^{*} : 826.7 γ to (19/2 ⁺), 410.6 γ to (21/2 ⁺); band assignment.
2843.6 ^t 4	$(23/2^+)$		CF	J^{n} : 849.1 γ to (19/2 ⁺), 432.7 γ to (21/2 ⁺); band assignments.
2917.5° 3	$(27/2^{-})$		C FG	J^{π} : 721.0 γ and 1233.1 γ Q to (23/2 ⁻); band assignment.
29/3.3° 4	$(25/2^+)$ $(25/2^+)$			J [*] : 1288.5 γ D to (23/2); band assignment. I^{π} : 224 lay D AI=1 to (22/2 ⁺), 1260 0g D AI=1 to (22/2 ⁻), 500 5g to
5045.5 5	(23/2)		Сг	J : 224.17 D , $\Delta J = 1.00$ ($23/2$), 1300.97 D , $\Delta J = 1.00$ ($23/2$), 399.37 (0 ($21/2^+$).
3227.0 ^{&} 4	$(29/2^{-})$		C FG	J^{π} : 790.9 γ O to (25/2 ⁻), 741.8 γ D to (27/2 ⁻); band assignment.
3304.8 ^d 4	$(27/2^+)$		CF	J^{π} : 259.3 γ and 331.5 γ D to (25/2 ⁺), 598.5 γ Q to (23/2 ⁺); band
				assignment.
3329.8 ^e 4	$(27/2^+)$	0	C F	J^{π} : 623.5 γ Q to (23/2 ⁺), 284.3 γ D to (25/2 ⁺); band assignment.
3353.5 ^a 4	$(31/2^{-})$	0.23 ⁽⁰⁾ ps 4	CDEFGH	J^{π} : 868.3 γ E2 to (27/2 ⁻); band assignment.
3618.0 ^c 4	$(29/2^+)$		CF	J^{n} : 644.7 γ Q to (25/2 ⁺), 313.2 γ D to (27/2 ⁺); band assignment.
3728.90 4	$(31/2^{-})$		C FG	J^{π} : 1243.7 γ Q to (27/2 ⁻); band assignment.
3995.1 ^{<i>a</i>} 4	$(31/2^+)$		CF	J^{π} : 377.1 γ D, ΔJ =1 to (29/2 ⁺), 690.3 γ to (27/2 ⁺); band assignment.
4045.4° 5	$(31/2^+)$		C F	J^{*} : /15.6 γ Q to (2//2 ⁺); band assignment.
4055.3 4	(33/2)	· · · ·	C FG	J^{*} : 828.4 γ Q to (29/2), 701.7 γ D to (31/2); band assignment.
$4258.2^{\circ} 4$	$(35/2^{-})$	0.22 ps +4-5	CDEFG	J^{*} : 904.6 γ E2 to (31/2 ⁻); band assignment. \overline{M} : 700.4 ω O to (20/2 ⁺), 412.2 ω D to (21/2 ⁺); hand assignment
4400.4 J	(35/2)			J. 790.47 Q to (29/2), 415.27 D to (51/2), band assignment. \overline{M}_{1} 801 Sector (21/2), hand assignment
4020.7 5	(33/2)			J^{*} : 891.67 to (51/2); band assignment.
4834.1° 0 4863 3 ^e 6	$(35/2^+)$ $(35/2^+)$			J^{*} : 858.97 Q to (51/2°), 425.87 D to (55/2°); band assignment. I^{π} : 817.92 O to (31/2 ⁺); band assignment
4933 6 4 5	$(35/2^{-})$		C F	I^{π} : 878 3 $_{2}$ (F2) to (33/2 ⁻), 675 6 $_{2}$ D to (35/2 ⁻); hand assignment
5213.0^{a}	$(37/2^{-})$	$0.30^{@}$ ps 5	CDEEC	I^{π} : 055.7 \times E2 to (35/2 ⁻); band assignment
5246.4 7	(39/2)	0.50 ps 5	C	$3 \cdot 335.77 \pm 2.00 (35/2)$, band assignment.
5334.4 [°] 6	$(37/2^+)$		C	J^{π} : 926.0 γ to (33/2 ⁺), 500.4 γ to (35/2 ⁺); band assignment.
5596.9 <mark>b</mark> 8	$(39/2^{-})$		C F	J^{π} : 976.2 γ to (35/2 ⁻); band assignment.
5751.8 ^e 6	$(39/2^+)$		C F	J^{π} : 888.5 γ Q to (35/2 ⁺); band assignment.
5792.9 ^d 7	$(39/2^+)$		С	J^{π} : 958.9 γ to (35/2 ⁺), 458.5 γ to (37/2 ⁺); band assignment.
5905.5 <mark>&</mark> 6	$(41/2^{-})$		C F	J^{π} : 971.9 γ Q to (37/2 ⁻), 691.7 γ to (39/2 ⁻); band assignment.
6239.5 ^a 6	$(43/2^{-})$	0.18 [@] ps <i>3</i>	CDEFG	J^{π} : 1025.5 γ E2 to (39/2 ⁻), 334.2 γ to (41/2 ⁻); band assignment.
6296.8 10			C	
6670.7° 7	$(43/2^+)$		CF	J^{*} : 918.9 γ Q to (39/2 ⁺); band assignment.
6678.8° 10	(43/2 ⁻)		C	J^{*} : 1081.9 γ to (39/2 ⁻); band assignment.
6981.2 ^{°°} 7	$(45/2^{-})$		C	J^{n} : 1075.8 γ Q to (41/2 ⁻), 741.6 γ to (43/2 ⁻); band assignment.
7352.5 ^{<i>a</i>} 7 7413.8 <i>11</i>	(47/2 ⁻)	0.10 ^w ps 3	CDEFG C	J^{n} : 1112.9 γ E2 to (43/2 ⁻), 371.3 γ to (45/2 ⁻); band assignment.
7646.9 ^e 9	$(47/2^+)$		C F	J^{π} : 976.2 γ Q to (43/2 ⁺); band assignment.

Continued on next page (footnotes at end of table)

¹²³Cs Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
7837.5 ^b 12	$(47/2^{-})$		С	J^{π} : 1158.7 γ to (43/2 ⁻); band assignment.
8159.2 <mark>&</mark> 7	$(49/2^{-})$		С	J^{π} : 1178.9 γ Q to (45/2 ⁻), 806.7 γ to (47/2 ⁻); band assignment.
8559.2 ^a 7	$(51/2^{-})$	0.10 [@] ps +2-3	CDE G	XREF: G(8549.5).
				J ^{π} : 1206.7 γ E2 to (47/2 ⁻), 400.0 γ to (49/2 ⁻); band assignment.
8699.9 ^e 10	$(51/2^+)$		C F	J ^{π} : 1053.0 γ Q to (47/2 ⁺); band assignment.
9435.8 ^{&} 8	$(53/2^{-})$		С	J^{π} : 1276.6 γ Q to (49/2 ⁻), 876.7 γ to (51/2 ⁻); band assignment.
9862.3 ^a 8	$(55/2^{-})$		CD	XREF: D(?).
				J^{π} : 1303.1 γ Q to (51/2 ⁻), 426.5 γ to (53/2 ⁻); band assignment.
9888.3 ^e 12	$(55/2^+)$		CF	J^{n} : 1188.3 γ Q to (51/2 ⁺); band assignment.
10772.8 ^{&} 10	$(57/2^{-})$		С	J^{π} : 1337.0 γ to (53/2 ⁻); band assignment.
11021.1 ^{<i>f</i>} 14	$(59/2^+)$		С	J^{π} : 1132.8 γ Q to (55/2 ⁺); band assignment.
11213.7 ^e 14	$(59/2^+)$		С	J^{π} : 1325.4 γ Q to (55/2 ⁺); band assignment.
11233.5 10	$(59/2^{-})$		CD	XREF: D(?).
				J^{π} : proposed by 2004Si27 in (⁶⁴ Ni,p4n γ) from 1371.3 γ Q to (55/2 ⁻).
11252.7 ^a 10	$(59/2^{-})$		С	J^{π} : 1390.3 γ Q to (55/2 ⁻); band assignment.
11270.8? 12	(59/2 ⁻)		С	E(level): the level is at 11271 or 11795 depending on the ordering of the 1022-498 cascade (2004Si27).
				J^{π} : proposed by 2004Si27 in (⁶⁴ Ni,p4n γ) from 498.0 γ D+Q to (57/2 ⁻).
11916.6 <i>11</i>	$(61/2^{-})$		С	J^{π} : proposed by 2004Si27 in (⁶⁴ Ni,p4n γ) from 663.9 γ D+Q to (59/2 ⁻).
12293.2 10	$(63/2^{-})$		С	J^{π} : proposed by 2004Si27 in (⁶⁴ Ni,p4n γ) from 1059.8 γ Q to (59/2 ⁻).
12431.0 ^{<i>a</i>} 11	$(63/2^{-})$		С	J^{π} : 1178.3 γ to (59/2 ⁻); band assignment.
12469.5 ^{<i>f</i>} 15	$(63/2^+)$		С	J^{π} : 1448.4 γ Q to (59/2 ⁺); band assignment.
12609.6 ^e 15	$(63/2^+)$		С	J^{π} : 1395.9 γ to (59/2 ⁺); band assignment.
13165.1 ^{<i>f</i>} 16	$(67/2^+)$		С	J^{π} : 695.6 γ O to (59/2 ⁺); band assignment.
13533.7 ^a 11	$(67/2^{-})$		С	J^{π} : 1240.5 γ Q to (63/2 ⁻); band assignment.
13870.1 ^{<i>f</i>} 17	$(71/2^+)$		С	J^{π} : 705.0 γ Q to (67/2 ⁺); band assignment.
14955.4 a 12	$(71/2^{-})$		С	J^{π} : 1421.7 γ Q to (67/2 ⁻); band assignment.

[†] From a least-squares fit to γ -ray energies, unless otherwise noted.

[‡] From recoil-distance method (RDM) in ($^{19}F,4n\gamma$) (1992Dr05).

[#] Effective half-life by RDM, not corrected for feeding lifetime (1992Dr05).

[@] From Doppler-shift attenuation method (DSAM) in $({}^{32}S,p4n\gamma)$ (2013Se14).

& Band(A): $(17/2^{-})$ band, $\alpha = +1/2$. $\pi h_{11/2}$ at low spins; $\pi h_{11/2} \otimes \nu h_{11/2}^{6}$ at high spins. See also 2004Si27 for detailed discussion of configurations at high spins. Nilsson configuration= $\pi 1/2[550]$, $\alpha = +1/2$ (2005Si31).

^{*a*} Band(a): $11/2^{(-)}$ band, $\alpha = -1/2$. See comment for $\alpha = +1/2$ signature partner. Nilsson configuration= $\pi 1/2$ [550], $\alpha = -1/2$ (2005Si31).

^b Band(B): γ -vibrational band built on favored signature partner $\pi 1/2[550]$, $\alpha = -1/2$ (2005Si31). ^c Band(C): (25/2⁺) band, $\alpha = +1/2$. $\pi g_{9/2}^{-1} \otimes v h_{11/2}^2$ is most favored although $\pi (g_{9/2}^{-1} h_{11/2}^1) \otimes v h_{11/2}^1$ is not ruled out

(2004Si27). Nilsson configuration= $(\pi 1/2[550], \alpha = -1/2) \otimes v(7/2[404] \text{ or } 5/2[402], \alpha = -1/2) \otimes (v7/2[523], \alpha = -1/2)$ (2005Si31).

^d Band(c): (27/2⁺) band, $\alpha = -1/2$. See comment for $\alpha = +1/2$ signature partner.

^e Band(D): (27/2⁺) band. See 2004Si27 and 2005Si31 for detailed discussion of configurations.

^{*f*} Band(E): $(59/2^+)$ band. Forking of $(27/2^+)$ band at $55/2^+$ (2004Si27).

^g Band(F): $\pi g_{9/2}$ band, $\alpha = +1/2$. Nilsson configuration= $\pi 9/2[404]$ (2005Si31).

^{*h*} Band(f): $\pi g_{9/2}$ band, $\alpha = -1/2$. Nilsson configuration= $\pi 9/2[404]$ (2005Si31).

^{*i*} Band(G): $\pi g_{7/2}$ band, $\alpha = -1/2$. Nilsson configuration = $\pi 3/2[422]$ (2005Si31).

					Adop	ted Levels, Gam	<mark>mas</mark> (continue	<u>(b:d)</u>
						γ (¹²³ C	<u>s)</u>	
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	$\delta^{\#}$	$lpha^{\dagger}$	Comments
30.59	$(3/2^+)$	30.6 5	100	0.0 1/2 ⁽⁺⁾				E_{γ} : other: 30.5 7 from (²⁸ Si,p4n γ).
94.57	5/2(+)	63.97 <i>3</i>	16.6 <i>1</i>	30.59 (3/2+)	M1		3.26	$\alpha(K)=2.79 \ 4; \ \alpha(L)=0.374 \ 6; \ \alpha(M)=0.0766 \ 11 \ \alpha(N)=0.01617 \ 23; \ \alpha(O)=0.00225 \ 4; \ \alpha(P)=0.0001098 \ 16 \ B(M1)(W.u.)=3.9\times10^{-4} \ +21-10 \ E_{y},I_{y}: \ other: \ E_{y}=64.0 \ 7, \ I_{y}=15 \ 2 \ from \ (^{28}Si,p4ny).$
		94.57 <i>3</i>	100	0.0 1/2 ⁽⁺⁾	E2		2.28	Mult.: also supported by ce data in ¹²⁵ 11 decay. B(E2)(W.u.)=57 +30-15 α (K)=1.434 21; α (L)=0.666 10; α (M)=0.1442 21 α (N)=0.0292 5; α (O)=0.00342 5; α (P)=3.93×10 ⁻⁵ 6 E _{γ} : others: 94.6 1 from ¹²³ Cs IT decay, 94.5 7 from (²⁸ Si,p4n γ), 95.0 3 from (¹⁹ F,4n γ), and 94.7 3 from (¹⁰ B,3n γ). Mult.: from ce data in ¹²³ Cs IT decay
l								(1981Ma01, 1972Dr06); also supported by ce data in ¹²³ Ba ε decay (2000Gi12).
123.52	$(3/2^+)$	29.0 <i>1</i> 92.92 <i>3</i>	85.8 18	94.57 5/2 ⁽⁺⁾ 30.59 (3/2 ⁺)	M1+E2	0.35 5	1.25 5	I_{γ} : weak. $\alpha(K)=1.012\ 22;\ \alpha(L)=0.192\ 18;\ \alpha(M)=0.040\ 4$
		123.6 <i>1</i>	100.0 9	0.0 1/2 ⁽⁺⁾	M1+E2	0.19 +9-13	0.508 17	$\alpha(N)=0.0083 \ 8; \ \alpha(O)=0.00108 \ 9; \ \alpha(P)=3.78\times10^{-5} \ 6$ $\alpha(K)=0.431 \ 10; \ \alpha(L)=0.061 \ 6; \ \alpha(M)=0.0127 \ 13$ $\alpha(N)=0.0027 \ 3; \ \alpha(O)=0.00036 \ 3; \ \alpha(P)=1.670\times10^{-5} \ 25$
146.80	$5/2^{(+)}$	23.2 1		$123.52 (3/2^+)$				
		52.20 5	3.4 2	94.57 5/2(+)				
		116.2 <i>1</i>	100 11	30.59 (3/2+)	M1+E2	0.77 +40-23	0.78 11	$\alpha(K)=0.60$ 6; $\alpha(L)=0.14$ 5; $\alpha(M)=0.030$ 10
								$\alpha(N)=0.0062$ 19; $\alpha(O)=0.00078$ 21; $\alpha(P)=2.05\times10^{-5}$ 5
		146.8 <i>1</i>	17 5	$0.0 1/2^{(+)}$	E2		0.483	$\alpha(K)=0.357\ 5;\ \alpha(L)=0.0998\ 15;\ \alpha(M)=0.0213\ 3$ $\alpha(N)=0.00436\ 7;\ \alpha(O)=0.000530\ 8;\ \alpha(P)=1.071\times10^{-5}\ 16$
156.27	11/2 ⁽⁻⁾	61.70 <i>5</i>		94.57 5/2 ⁽⁺⁾	E3		289	B(E3)(W.u.)=0.81 +13-10 α (K)=22.9 4; α (L)=207 3; α (M)=47.8 7 α (N)=9.65 15; α (O)=1.066 16; α (P)=0.000570 8 E _y : other: 61.7 2 from ¹²³ Cs IT decay. Mult : from ce data in ¹²³ Cs IT decay. (1981Ma01)
214.56	7/2 ⁽⁻⁾	58.30 5	13.5 5	156.27 11/2 ⁽⁻⁾	E2		13.19	$\alpha(K)=5.37 \ 8; \ \alpha(L)=6.17 \ 9; \ \alpha(M)=1.348 \ 20 \ \alpha(N)=0.271 \ 4; \ \alpha(O)=0.0308 \ 5; \ \alpha(P)=0.0001409 \ 20$
		67.75 5	5.5 5	146.80 5/2 ⁽⁺⁾	[E1]		0.644	$\alpha(K) = 0.547 \ 8; \ \alpha(L) = 0.0769 \ 11; \ \alpha(M) = 0.01565 \ 23 \ \alpha(N) = 0.00323 \ 5; \ \alpha(O) = 0.000422 \ 6; \ \alpha(P) = 1.620 \times 10^{-5} \ 23$
		120.0 <i>1</i>	100 5	94.57 5/2 ⁽⁺⁾	E1		0.1320	$\alpha(K) = 0.1133 \ 16; \ \alpha(L) = 0.01500 \ 22; \ \alpha(M) = 0.00305 \ 5 \ \alpha(N) = 0.000636 \ 9; \ \alpha(O) = 8.51 \times 10^{-5} \ 12; \ \alpha(P) = 3.62 \times 10^{-6} \ 6$
231.63	$(7/2^+)$	84.8 1	4.7 4	146.80 5/2 ⁽⁺⁾				
		108.1 <i>1</i>	1.3 2	123.52 (3/2+)	E2		1.416	α (K)=0.950 <i>14</i> ; α (L)=0.369 <i>6</i> ; α (M)=0.0795 <i>12</i> α (N)=0.01615 <i>24</i> ; α (O)=0.00191 <i>3</i> ; α (P)=2.67×10 ⁻⁵ <i>4</i>

S

 $^{123}_{55}\mathrm{Cs}_{68}$ -5

¹²³₅₅Cs₆₈-5

					Ado	pted Levels,	Gammas (c	ontinued)	
						γ (¹²³ Cs) (continued))	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	$\delta^{\#}$	α^{\dagger}	Comments
231.63	(7/2 ⁺)	137.0 1	38.7 10	94.57	5/2 ⁽⁺⁾	M1(+E2)	-0.04 10	0.371 7	$\begin{aligned} &\alpha(K) = 0.318 \ 5; \ \alpha(L) = 0.0422 \ 18; \ \alpha(M) = 0.0086 \ 4 \\ &\alpha(N) = 0.00183 \ 8; \ \alpha(O) = 0.000254 \ 9; \ \alpha(P) = 1.248 \times 10^{-5} \\ & I8 \\ & E_{\gamma}: \ \text{others:} \ 137.0 \ 5 \ \text{from} \ (^{28}\text{Si},\text{p4n}\gamma), \ 136.7 \ 3 \ \text{from} \end{aligned}$
		201.0 <i>1</i>	100 6	30.59	(3/2+)	E2		0.1636	(¹⁹ F,4ηγ), and 136.9 <i>3</i> from (¹⁰ B,3ηγ). I _γ : others: 35 <i>3</i> from (²⁸ Si,p4ηγ), and 49 <i>4</i> from (¹⁹ F,4ηγ). δ: from $\gamma(\theta)$ in (¹⁹ F,4ηγ) (1992Hu02). Other: <0.6 from ce data in ¹²³ Ba ε decay. $\alpha(K)=0.1283 \ 18; \ \alpha(L)=0.0280 \ 4; \ \alpha(M)=0.00593 \ 9$ $\alpha(N)=0.001219 \ 18; \ \alpha(O)=0.0001529 \ 22; \ \alpha(P)=4.08\times10^{-6} \ 6$ E _γ : others: 201.0 5 from (²⁸ Si,p4ηγ), 200.7 <i>3</i> from (¹⁹ F,4ηγ), and 201.2 <i>3</i> from (¹⁰ B,3ηγ). I _γ : others: 100 5 from (²⁸ Si,p4ηγ), 100 7 from (¹⁹ F,4ηγ).
328.08	(9/2+)	96.46 <i>6</i>	100 <i>3</i>	231.63	(7/2+)	M1		0.998	Mult.: also supported by $\gamma\gamma$ (DCO) in (²⁸ Si,p4n γ) and $\gamma(\theta)$ in (¹⁹ F,4n γ) and (¹⁰ B,3n γ). α (K)=0.855 <i>12</i> ; α (L)=0.1139 <i>16</i> ; α (M)=0.0233 <i>4</i> α (N)=0.00493 <i>7</i> ; α (O)=0.000686 <i>10</i> ; α (P)=3.36×10 ⁻⁵ 5
		233.5 2	31 5	94.57	5/2 ⁽⁺⁾	[E2]		0.0987	B(M1)(W.u.)=9.20×10 ⁻⁵ 46 E _{γ} : other: 96.5 7 from (²⁸ Si,p4n γ). α (K)=0.0789 12; α (L)=0.01574 23; α (M)=0.00331 5 α (N)=0.000684 10; α (O)=8.69×10 ⁻⁵ 13; α (P)=2.58×10 ⁻⁶ 4 B(E2)(W.u.)=0.026 6
467.57	(3/2+,5/2+,7/2+)	236.0 2 373.1 2	17 <i>1</i> 100 <i>3</i>	231.63 94.57	(7/2 ⁺) 5/2 ⁽⁺⁾	M1,E2 M1(+E2)	<1.2	0.0243 11	α (K)=0.0208 <i>11</i> ; α (L)=0.00285 <i>6</i> ; α (M)=0.000585 <i>15</i> α (N)=0.000123 <i>3</i> ; α (O)=1.692×10 ⁻⁵ <i>24</i> ; α (P)=7.9×10 ⁻⁷ <i>7</i>
474.88	3/2 ⁽⁻⁾	260.3 1	100 8	214.56	7/2 ⁽⁻⁾	E2		0.0689	$\alpha(K) = 0.0557 \ 8; \ \alpha(L) = 0.01049 \ 15; \ \alpha(M) = 0.00220 \ 3 \\ \alpha(N) = 0.000455 \ 7; \ \alpha(O) = 5.83 \times 10^{-5} \ 9; \\ \alpha(P) = 1.85 \times 10^{-6} \ 3 $
		351.3 <i>3</i> 380 3 5	10.8 <i>15</i> 20.8	123.52 94.57	$(3/2^+)$ $5/2^{(+)}$				
		444.5 <i>4</i>	46 5	30.59	$(3/2^+)$	(E1)		0.00408	$\alpha(K)=0.00353 5; \alpha(L)=0.000442 7; \alpha(M)=8.98\times10^{-5}$ I3 $\alpha(N)=1.89\times10^{-5} 3; \alpha(O)=2.62\times10^{-6} 4;$
17676	$(15/2^{-})$	220 5 2	100	156.07	11/2(-)	52			$\alpha(P)=1.260\times10^{-7}$ 18

From ENSDF

 $^{123}_{55}\mathrm{Cs}_{68}$ -6

 $^{123}_{55}\mathrm{Cs}_{68}$ -6

					Adopt	ted Levels,	Gammas (continued)	
						γ (¹²³ Cs) (continued	<u>1)</u>	
E _i (level)	J_i^π	E _γ ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α^{\dagger}	Comments
404.05	(2)(2+5)(2+)			221.62	(7/0+)				
494.05	$(3/2^{\circ}, 5/2^{\circ})$	262.0 2 347.3 2	7.1 <i>14</i> 28.9 <i>23</i>	231.63 146.80	$(1/2^{+})$ $5/2^{(+)}$	M1+E2	>0.2	0.0289 15	$\alpha(K)=0.0244$ 17; $\alpha(L)=0.00358$ 20; $\alpha(M)=0.00074$ 5
			100 6		, , ,				α (N)=0.000155 9; α (O)=2.09×10 ⁻⁵ 6; α (P)=9.0×10 ⁻⁷ 12
		370.6 2	100 6	123.52	(3/2+)	MI		0.0257	$\alpha(\mathbf{K})=0.0222 \ 4; \ \alpha(\mathbf{L})=0.00285 \ 4; \ \alpha(\mathbf{M})=0.000583 \ 9$ $\alpha(\mathbf{N})=0.0001233 \ 18; \ \alpha(\mathbf{O})=1.722\times10^{-5} \ 25; $ $\alpha(\mathbf{P})=8.61\times10^{-7} \ 13$
		399.6 2	20.3 3	94.57	$5/2^{(+)}$	M1,E2			
		403.72 $494.0^{@}2$	<125	0.0	(3/2) $1/2^{(+)}$	M1,E2 M1.E2			Mult.: for a doublet.
524.69	(1/2+,3/2+,5/2+)	401.3 2	34 4	123.52	(3/2+)	M1		0.0210	α (K)=0.0181 3; α (L)=0.00233 4; α (M)=0.000475 7 α (N)=0.0001004 15; α (O)=1.403×10 ⁻⁵ 20; α (P)=7.02×10 ⁻⁷ 10
		524.4 3	100 9	0.0	$1/2^{(+)}$	M1,E2			
557.51	$(1/2^+, 3/2^+, 5/2^+)$	$410.8\ 2$ 526 5 [@] 5	100 2 <70	146.80 30.59	$5/2^{(1)}$ $(3/2^+)$	M1,E2 M1 F2			Mult · for a doublet
		557.4 5	11 2	0.0	$1/2^{(+)}$	1111,02			
588.52	(*)	441.5 4	6.7 13	146.80	$5/2^{(+)}$				
596.96	(11/2+)	494.0 2 268.9 2	100 7	94.57 328.08	5/2 ⁽⁺⁾ (9/2 ⁺)	M1,E2 M1+E2	+0.17 2	0.0593	¹ γ,Mult.: for a doublet. B(M1)(W.u.)=0.17 +5-3; B(E2)(W.u.)=47 +29-17 α(K)=0.0509 8; α(L)=0.00670 10; α(M)=0.001372 20 α(N)=0.000290 5; α(O)=4.03×10 ⁻⁵ 6; α(P)=1.98×10 ⁻⁶ 3 E _γ : weighted average of 268.8 2 from (⁶⁴ Ni,p4nγ), 269 1 from (³⁴ S,3pγ), 268.9 5 from (²⁸ Si,p4nγ), 269.0 2 from (¹⁹ F,4nγ), and 269.0 3 from (¹⁰ B,3nγ). Mult.,δ: from γ(θ) in (¹⁹ F,4nγ) and RUL; ΔJ=1 from γγ(DCO) in (⁶⁴ Ni,p4nγ) and (²⁸ Si,p4nγ), and γ-anisotropy in (³⁴ S,3pγ) Other: δ=≈0.2 from γ(θ) in (¹⁰ B,3nγ).
620.90	(5/2 ⁺)	389.0 5	8.1 <i>13</i>	231.63	(7/2 ⁺)	M1		0.0228	α (K)=0.0196 3; α (L)=0.00252 4; α (M)=0.000514 8 α (N)=0.0001088 16; α (O)=1.520×10 ⁻⁵ 22; α (P)=7.60×10 ⁻⁷ 11
		474.8 <i>5</i> 497.4 <i>2</i>	10.0 <i>13</i> 100 <i>13</i>	146.80 123.52	$5/2^{(+)}$ $(3/2^+)$	M1,E2			

 \neg

From ENSDF

 $^{123}_{55}\mathrm{Cs}_{68}$ -7

 $^{123}_{55}\mathrm{Cs}_{68}$ -7

					Adopted Leve	ls, Gammas	(contin	ued)	
					$\gamma(^{123})$	Cs) (continue	ed)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ #	α^{\dagger}	Comments
620.90	(5/2 ⁺)	526.5 [@] 5	56 3	94.57	$5/2^{(+)}$	M1,E2			Mult.: for a doublet.
		590.4 3 621.0 <i>3</i>	57 3 19 2	30.59 0.0	$(3/2^+)$ $1/2^{(+)}$	M1,E2 (E2)		0.00528	α (K)=0.00449 7; α (L)=0.000630 9; α (M)=0.0001294 19 α (N)=2.72×10 ⁻⁵ 4; α (O)=3.69×10 ⁻⁶ 6;
659.80	(11/2+)	428.1 2	100	231.63	(7/2+)	E2		0.01464	α (P)=1.636×10 ⁻⁷ 23 Mult.: M1,E2 from ce data in ¹²³ Ba ε decay; (E2) assumed from level scheme. B(E2)(W.u.)=59 +12-9 α (K)=0.01226 18; α (L)=0.00189 3; α (M)=0.000392
									⁶ α (N)=8.18×10 ⁻⁵ <i>12</i> ; α (O)=1.090×10 ⁻⁵ <i>16</i> ; α (P)=4.34×10 ⁻⁷ <i>7</i> E _γ : weighted average of 428.0 2 from (⁶⁴ Ni,p4nγ), 428.2 5 from (²⁸ Si,p4nγ), 428.3 2 from (¹⁹ F,4nγ), and 428.0 3 from (¹⁰ B,3nγ). Mult : also supported by $\gamma(\theta)$ in (¹⁰ B 3nγ)
699.12	(5/2 ⁺ ,7/2 ⁺ ,9/2 ⁺)	231.7 2	30 <i>3</i>	467.57	$(3/2^+, 5/2^+, 7/2^+)$				
		484.2 <i>3</i>	100 <i>17</i>	214.56	$(1/2^{-})$ $7/2^{(-)}$	E1		0.00334	α (K)=0.00289 4; α (L)=0.000360 5; α (M)=7.32×10 ⁻⁵ 11 α (N)=1.542×10 ⁻⁵ 22; α (O)=2.13×10 ⁻⁶ 3; α (P)=1.033×10 ⁻⁷ 15
728.0	(1/2 to 7/2) ⁽⁺⁾	633.5 <i>5</i> 697.3 <i>5</i>	100 <i>20</i> ≈20	94.57 30.59	$5/2^{(+)}$ (3/2 ⁺)				
749.64	$(1/2^+, 3/2^+, 5/2^+)$	602.8 <i>5</i> 626.3 <i>3</i>	84 <i>10</i> 60 <i>10</i>	146.80 123.52	$5/2^{(+)}$ (3/2 ⁺)				
		718.8 [@] 3 749.7-3	<460 100 10	30.59	$(3/2^+)$ $1/2^{(+)}$	M1(+E2)			Mult.: for a doublet.
784.37	(3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻)	309.5 3	35 3	474.88	$3/2^{(-)}$				
811.17	(3/2 ⁺ ,5/2 ⁺)	569.8 <i>3</i> 336.2 <i>3</i> 664 5 5	100 8 11 <i>1</i> 6 3	214.56 474.88	$7/2^{(-)}$ $3/2^{(-)}$ $5/2^{(+)}$	M1,E2			
		688.1 <i>5</i> 716.6 <i>3</i> 780.8 <i>3</i>	16 2 100 3 37 1	123.52 94.57 30.59	$(3/2^+)$ $(5/2^{(+)})$ $(3/2^+)$	M1+E2			
	and an t	811.0 [@] 2	<48	0.0	$1/2^{(+)}$				
817.15	$(3/2^+, 5/2^+)$	670.6 <i>3</i>	100 7	146.80	5/2(+)	M1+E2	<2.0	0.0053 7	$\alpha(K)=0.0045 \ 6; \ \alpha(L)=0.00059 \ 6; \ \alpha(M)=0.000121 \ 11 \ \alpha(N)=2.55\times10^{-5} \ 24; \ \alpha(O)=3.5\times10^{-6} \ 4; \ \alpha(P)=1.72\times10^{-7} \ 25$
		786.8 <i>5</i>	12 3	30.59	$(3/2^+)$				

 ∞

					Adopte	ed Levels, (Gammas (c	ontinued)	
						$\gamma(^{123}Cs)$	(continued))	
E _i (level)	J_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f J	π	Mult. [‡]	δ #	α^{\dagger}	Comments
817.15 866.46	$(3/2^+, 5/2^+) (3/2^+, 5/2^+)$	816.8 [@] 3 635.1 4 718.8 [@] 3 771.8 4 836.2 2	<30 100 5 <230 10 3 20 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(+) (+) (+) (+) (+) (+)	M1(+E2)			Mult.: for a doublet.
869.7	(5/2 ⁺ ,7/2 ⁺ ,9/2 ⁺)	866.5 5 541.6 3 723.1 5	$\begin{array}{c} 20 \ 5 \\ 100 \ 8 \\ \approx 8 \end{array}$	0.0 1/2 328.08 (9/2 146.80 5/2	(+) (+)	M1,E2			
900.49	(13/2+)	303.5 2	100 9	596.96 (11	/2+)	M1+E2	+0.14 4	0.0431	B(M1)(W.u.)=0.33 +30-12; B(E2)(W.u.)=5×10 ¹ +10-3 α(K)=0.0371 6; α(L)=0.00483 7; α(M)=0.000988 15 α(N)=0.000209 3; α(O)=2.91×10 ⁻⁵ 5; α(P)=1.440×10 ⁻⁶ 21 E _γ : weighted average of 303.5 2 from (⁶⁴ Ni,p4nγ), 304 1 from (³⁴ S,3pγ), 303.5 5 from (²⁸ Si,p4nγ), 303.7 3 from (¹⁹ F,4nγ), and 303.3 3 from (¹⁰ B,3nγ). I _γ : from (⁶⁴ Ni,p4nγ). Others: 100 11 from (²⁸ Si,p4nγ), 100 7 from (¹⁹ F,4nγ), 9.5 from (³⁴ S,3pγ), 56 from (¹⁰ Be,3nγ). Mult,δ: from γ(θ) in (¹⁹ F,4nγ) and RUL; ΔJ=1 from γγ(DCO) in (⁶⁴ Ni,p4nγ) and (²⁸ Si,p4nγ), γ anisotropy is (³⁴ S, 2pγ), Others
		572.5 3	26 4	328.08 (9/2	2+)	E2		0.00652	
905.43	(3/2+,5/2+)	673.8 <i>5</i> 757.8 <i>3</i> 782.4 <i>3</i> 811.0 [@] 2 874.8 <i>5</i>	≈17 70 7 100 10 <257 43 17 33 10	231.63 (7/2 146.80 5/2 123.52 (3/2 94.57 5/2 30.59 (3/2	$2^+)$ (+) $2^+)$ (+) $2^+)$ (+)				
999.07	(19/2 ⁻)	522.4 2	100	476.76 (15)	/2-)	E2		0.00834	B(E2)(W.u.)=124 +29-11 α (K)=0.00705 10; α (L)=0.001030 15; α (M)=0.000212 3 α (N)=4.45×10 ⁻⁵ 7; α (O)=5.99×10 ⁻⁶ 9; α (P)=2.54×10 ⁻⁷ 4 E _y : weighted average of 522.3 2 from (⁶⁴ Ni,p4ny), 522 1 from (³⁴ S,3py), 522.3 5 from (²⁸ Si,p4ny), 522.5 2 from (¹⁹ F,4ny), and 522.2 3 from (¹⁰ B,3ny).

 $^{123}_{55}\mathrm{Cs}_{68}$ -9

					Ad	lopted Level	s, Gammas	(continued	<u>)</u>
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ#	α^{\dagger}	Comments
1021.68	(3/2 ⁻)	546.8 <i>3</i> 807.1 <i>3</i> 898.0 <i>3</i> 991.3 <i>4</i> 1021 9 6	100 6 28 1 30 6 38 3 20 3	474.88 214.56 123.52 30.59 0.0	$ \frac{3/2^{(-)}}{7/2^{(-)}} \\ (3/2^{+}) \\ (3/2^{+}) \\ 1/2^{(+)} $	M1,E2			
1048.75	(3/2 ⁺ ,5/2 ⁺)	428.3 <i>3</i> 816.8 [@] <i>3</i> 1017.0 <i>10</i> 1048.5 <i>10</i>	100 25 <110 35 10 60 15	620.90 231.63 30.59 0.0	$(5/2^+)$ $(7/2^+)$ $(3/2^+)$ $1/2^{(+)}$	M1,E2			
1159.6	(17/2 ⁻)	682.6 3	100	476.76	(15/2 ⁻)	(M1+E2)	-0.36 2	0.00549	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00474 \ 7; \ \alpha(\mathrm{L}) = 0.000603 \ 9; \ \alpha(\mathrm{M}) = 0.0001228 \ 18 \\ \alpha(\mathrm{N}) = 2.60 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 3.63 \times 10^{-6} \ 6; \ \alpha(\mathrm{P}) = 1.82 \times 10^{-7} \ 3 \\ \mathrm{E}_{\gamma}: \text{ weighted average of } 682.7 \ 4 \ \mathrm{from} \ (^{64}\mathrm{Ni},\mathrm{p4n\gamma}), \ 682.7 \ 5 \\ \mathrm{from} \ (^{28}\mathrm{Si},\mathrm{p4n\gamma}), \ 682.7 \ 3 \ \mathrm{from} \ (^{19}\mathrm{F},\mathrm{4n\gamma}), \ \mathrm{and} \ 682.5 \ 3 \\ \mathrm{from} \ (^{10}\mathrm{B},\mathrm{3n\gamma}). \end{array} $
1237.24	(15/2+)	336.8 2	100 11	900.49	(13/2+)	(M1+E2)	+0.18 5	0.0328	Mult., δ : from $\gamma(\theta)$ in (¹⁹ F,4n γ); magnetic/electric character from level scheme. $\Delta J=1$ from $\gamma\gamma(DCO)$ in (²⁸ Si,p4n γ). $\alpha(K)=0.0282$ 4; $\alpha(L)=0.00368$ 6; $\alpha(M)=0.000751$ 11 $\alpha(N)=0.0001588$ 23; $\alpha(O)=2.21\times10^{-5}$ 4; $\alpha(P)=1.094\times10^{-6}$ 16
		640.4 <i>3</i>	33 11	596.96	(11/2+)	(E2)		0.00488	E _γ : Weighted average of 336.7.2 from (²¹ Ni,p4ny), 337.7 from (³⁴ S,3pγ), 336.9.5 from (²⁸ Si,p4nγ), 336.9.3 from (¹⁹ F,4nγ), and 337.0.3 from (¹⁰ B,3nγ). Mult.,δ: from $\gamma(\theta)$ in (¹⁹ F,4nγ); ΔJ=1 from $\gamma\gamma$ (DCO) in (⁶⁴ Ni,p4nγ) and (²⁸ Si,p4nγ), γ anisotropy in (³⁴ S,3pγ). Other: $\delta \approx +0.2$ from $\gamma(\theta)$ in (¹⁰ Be,3nγ). α (K)=0.00415.6; α (L)=0.000579.9; α (M)=0.0001189.17 α (N)=2.50×10 ⁻⁵ .4; α (O)=3.40×10 ⁻⁶ .5; α (P)=1.516×10 ⁻⁷ .22 E _γ : weighted average of 640.2.4 from (⁶⁴ Ni,p4nγ), 642.1 from (³⁴ S,3pγ), 640.5.5 from (²⁸ Si,p4nγ), 640.5.3 from (¹⁹ F,4nγ), and 640.3.3 from (¹⁰ B,3nγ). Mult.: Q from $\gamma\gamma$ (DCO) in (²⁸ Si,p4nγ), supported by $\gamma(\theta)$
1260.2	(15/2+)	600.3 <i>3</i>	100	659.80	(11/2 ⁺)	(E2)		0.00576	in (¹⁰ B,3n γ). α (K)=0.00489 7; α (L)=0.000691 10; α (M)=0.0001422 20 α (N)=2.98×10 ⁻⁵ 5; α (O)=4.05×10 ⁻⁶ 6; α (P)=1.78×10 ⁻⁷ 3
1593.4	(19/2 ⁻)	433.6 3	100	1159.6	(17/2 ⁻)	(M1)		0.01729	Additional information 1. $\alpha(K)=0.01490\ 21;\ \alpha(L)=0.00191\ 3;\ \alpha(M)=0.000389\ 6$ $\alpha(N)=8.24\times10^{-5}\ 12;\ \alpha(O)=1.151\times10^{-5}\ 17;\ \alpha(P)=5.77\times10^{-7}$ 9 Additional information 2.

 $^{123}_{55}\mathrm{Cs}_{68}$ -10

						Adop	ted Levels,	Gammas (con	tinued)
							γ (¹²³ Cs	s) (continued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I _γ ‡	\mathbf{E}_{f}	J_f^π	Mult. [‡]	δ [#]	$lpha^{\dagger}$	Comments
1593.4	(19/2-)	1116.6 3	25	476.76	(15/2-)	[E2]		1.35×10^{-3}	$\alpha(K)=0.001167\ 17;\ \alpha(L)=0.0001493\ 21;\ \alpha(M)=3.04\times10^{-5}\ 5$
1605.16	(17/2 ⁺)	367.7 3	100 25	1237.24	(15/2+)	(M1)		0.0263	$\begin{array}{l} \alpha(N)=6.42\times10^{-9} \ g(\alpha(O)=8.91\times10^{-7} \ I3; \ \alpha(P)=4.33\times10^{-6} \ 6; \\ \alpha(IPF)=7.37\times10^{-7} \ I3 \\ \alpha(K)=0.0226 \ 4; \ \alpha(L)=0.00291 \ 5; \ \alpha(M)=0.000595 \ 9 \\ \alpha(N)=0.0001258 \ I8; \ \alpha(O)=1.758\times10^{-5} \ 25; \ \alpha(P)=8.78\times10^{-7} \ I3 \\ E_{\gamma}: \ \text{weighted average of } 367.8 \ 4 \ \text{from } (^{64}\text{Ni},\text{p4n}\gamma), \ 368 \ I \\ \text{from } (^{34}\text{S},\text{3p}\gamma), \ 368.0 \ 5 \ \text{from } (^{10}\text{B} \ \text{3n}\gamma) \\ \end{array}$
		704.6 <i>3</i>	66 7	900.49	(13/2+)	(E2)		0.00384	I _γ : from (⁶⁴ Ni,p4nγ) and (²⁸ Si,p4nγ). Other: 100 25 from (¹⁹ F,4nγ). Additional information 3. $\alpha(K)=0.00328 5$; $\alpha(L)=0.000449 7$; $\alpha(M)=9.20\times10^{-5} 13$ $\alpha(N)=1.93\times10^{-5} 3$; $\alpha(O)=2.64\times10^{-6} 4$; $\alpha(P)=1.203\times10^{-7} 17$ E _γ : weighted average of 704.5 4 from (⁶⁴ Ni,p4nγ), 706 1 from (³⁴ S,3pγ), 704.5 5 from (²⁸ Si,p4nγ), and 704.5 3 from (¹⁹ F,4nγ).
1684.6	(23/2 ⁻)	685.5 2	100	999.07	(19/2 ⁻)	E2		0.00411	I _γ : weighted average of 66 8 from (⁶⁴ Ni,p4nγ), 67 7 from (²⁸ Si,p4nγ), and 50 25 from (¹⁹ F,4nγ). Additional information 4. B(E2)(W.u.)=9×10 ¹ +9-3 α (K)=0.00351 5; α (L)=0.000482 7; α (M)=9.90×10 ⁻⁵ 14 α (N)=2.08×10 ⁻⁵ 3; α (O)=2.84×10 ⁻⁶ 4; α (P)=1.285×10 ⁻⁷ 18 Example 1 (10) (10) (10) (10) (10) (10) (10) (1
1729.7	(21/2 ⁻)	570.0 <i>3</i>	31 5	1159.6	(17/2 ⁻)	E2		0.00660	E _{γ} : weighted average of 685.5 2 from (²⁴ N ₁ ,p4n γ), 686 <i>I</i> from (³⁴ S,3p γ), 685.5 5 from (²⁸ Si,p4n γ), 685.6 2 from (¹⁹ F,4n γ), and 685.2 <i>3</i> from (¹⁰ B,3n γ). α (K)=0.00559 8; α (L)=0.000800 <i>I</i> 2; α (M)=0.0001647 24 α (N)=3.45×10 ⁻⁵ 5; α (O)=4.67×10 ⁻⁶ 7; α (P)=2.03×10 ⁻⁷ 3 E _{γ} : weighted average of 570.0 6 from (⁶⁴ Ni,p4n γ), 570.3 7 from (²⁸ Si p4n γ) and 570.0 3 from (¹⁹ E 4n γ)
		730.6 2	100 8	999.07	(19/2 ⁻)	M1+E2	≈-0.27	≈0.00473	I from (⁻¹ 9,4πγ), and 5/0.6 5 from (⁻¹ 7,4πγ). I _γ : weighted average of 30 5 from (⁶⁴ Ni,p4nγ), 33 7 from (²⁸ Si,p4nγ), and 40 20 from (¹⁹ F,4nγ). $\alpha(K)\approx 0.00408; \alpha(L)\approx 0.000516; \alpha(M)\approx 0.0001051$ $\alpha(N)\approx 2.22\times 10^{-5}; \alpha(O)\approx 3.11\times 10^{-6}; \alpha(P)\approx 1.565\times 10^{-7}$ E _γ : weighted average of 730.4 4 from (⁶⁴ Ni,p4nγ), 730.9 5 from (²⁸ Si,p4nγ), 730.7 2 from (¹⁹ F,4nγ), and 730.2 3 from (¹⁰ B,3nγ). I _γ : from (⁶⁴ Ni,p4nγ). Others: 100 <i>11</i> from (²⁸ Si,p4nγ), and
1994.71	(19/2+)	389.2 <i>3</i>	89 12	1605.16	(17/2+)	(M1)		0.0227	100 20 from (¹⁹ F,4nγ). Mult.,δ: from $\gamma(\theta)$ in (¹⁰ B,3nγ) and RUL. ΔJ=1 from $\gamma\gamma$ (DCO) in (⁶⁴ Ni,p4nγ) and (²⁸ Si,p4nγ). α (K)=0.0196 3; α (L)=0.00252 4; α (M)=0.000514 8

						Ado	opted Level	s, Gammas (continued)
							$\gamma(^{123}$	Cs) (continued)
E _i (level)	\mathbf{J}_i^π	E _γ ‡	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α^{\dagger}	Comments
								$\alpha(N)=0.0001087 \ 16; \ \alpha(O)=1.518\times10^{-5} \ 22; \ \alpha(P)=7.59\times10^{-7} \ 11$ E_{γ} : weighted average of 389.7 4 from (⁶⁴ Ni,p4n γ), 389 1 from (³⁴ S,3p γ), 389.5 7 from (²⁸ Si,p4n γ), 389.5 3 from (¹⁹ F,4n γ), and 388.6 3 from (¹⁰ B,3n γ).
								I_{γ} : weighted average of 72 4 from (²⁰ S1,p4n γ) and 97 10 from (⁶⁴ N1,p4n γ). Others: 100 50 from (¹⁹ F,4n γ), 200 from (³⁴ S,3p γ). Additional information 5.
1994.71	$(19/2^+)$	734.4 <i>3</i>	44 8	1260.2	$(15/2^+)$	(E2)	0.00347	$\alpha(K)=0.00297 5; \alpha(L)=0.000403 6; \alpha(M)=8.26\times 10^{-5} 12$
								$\alpha(N)=1.737\times10^{-5}\ 25;\ \alpha(O)=2.38\times10^{-6}\ 4;\ \alpha(P)=1.091\times10^{-7}\ 16$
								E_{γ} : weighted average of 734.6 4 from (⁶⁴ Ni,p4n γ), 734.9 7 from (²⁸ Si,p4n γ),
								and $754.2.5$ from $(-7.7,40\gamma)$. I : from $(^{28}Si p/px)$ Others: 102.20 from $(^{64}Ni p/px)$. 250.100 from
								$(^{19}\text{F}4n\gamma)$ seem discrepant
								Additional information 6.
		757.9 <i>3</i>	100 11	1237.24	$(15/2^+)$	(E2)	0.00322	$\alpha(K)=0.00275$ 4; $\alpha(L)=0.000372$ 6; $\alpha(M)=7.62\times10^{-5}$ 11
								$\alpha(N)=1.603\times10^{-5}\ 23;\ \alpha(O)=2.20\times10^{-6}\ 3;\ \alpha(P)=1.013\times10^{-7}\ 15$
								E_{γ} : weighted average of 757.5 4 from (⁶⁴ Ni,p4n γ), 757 1 from (³⁴ S,3p γ),
								757.55 from (²⁶ Si,p4n γ), and 757.9 3 from (¹⁹ F,4n γ).
								I_{γ} : from (²³ S1,p4n γ). Others: 100 <i>I2</i> from (³⁴ N1,p4n γ), 100 50 from (¹⁷ F,4n γ), 100 from (³⁴ S,3p γ). Additional information 7
2003.7	(19/2+)	398.6 4	92 8	1605.16	(17/2 ⁺)	(M1)		E_{γ} : weighted average of 398.6 4 from (⁶⁴ Ni,p4n γ) and 398.4 7 from (²⁸ Si,p4n γ).
								I _{γ} : from (⁶⁴ Ni,p4n γ). Other: 159 <i>33</i> from (²⁸ Si,p4n γ). Additional information 8.
		743.4 <i>3</i>	100 19	1260.2	$(15/2^+)$	(E2)	0.00337	$\alpha(K)=0.00288 4; \alpha(L)=0.000391 6; \alpha(M)=8.01\times10^{-5} 12$
								$\alpha(N) = 1.684 \times 10^{-3} \ 24; \ \alpha(O) = 2.31 \times 10^{-6} \ 4; \ \alpha(P) = 1.060 \times 10^{-7} \ 15$
								E_{γ} : weighted average of 743.5 4 from (⁶⁴ N1,p4n γ), 744.0 / from (²⁶ S1,p4n γ), and 743.2 3 from (¹⁹ F,4n γ).
								I_{γ} : from (^{o4} Ni,p4n γ). Other: 100 20 from (^{2o} Si,p4n γ). Additional information 9.
		766.5 6	49 11	1237.24	(15/2 ⁺)			E_{γ} : weighted average of 766.5 6 from (⁶⁴ Ni,p4n γ) and 766.4 7 from (²⁸ Si,p4n γ).
								I_{γ} : weighted average of 51 11 from (⁶⁴ Ni,p4n γ) and 46 13 from (²⁸ Si,p4n γ).
2196.4	(23/2 ⁻)	466.6 <i>3</i>	24 6	1729.7	(21/2 ⁻)			E_{γ} : weighted average of 466.5 6 from (⁶⁴ Ni,p4n γ), 466.9 7 from (²⁸ Si,p4n γ), and 466.6 3 from (¹⁹ F,4n γ).
								I _{γ} : from (⁶⁴ Ni,p4n γ). Others: 100 24 from (²⁸ Si,p4n γ), and \approx 50 from (¹⁹ F,4n γ).
		602.9 <i>3</i>	100 18	1593.4	(19/2 ⁻)			E_{γ} : weighted average of 603.0 <i>6</i> from (⁶⁴ Ni,p4n γ), 603.0 7 from (²⁸ Si,p4n γ), and 602.9 <i>3</i> from (¹⁹ F,4n γ).
								I _γ : from (⁶⁴ Ni,p4nγ). Others: 100 24 from (²⁸ Si,p4nγ), and 100 50 from (¹⁹ F,4nγ).

н

						Adop	oted Levels, G	ammas (continued)
							$\gamma(^{123}Cs)$ ((continued)
E _i (level)	\mathbf{J}_i^π	E _γ ‡	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [‡]	$lpha^{\dagger}$	Comments
2196.4	(23/2 ⁻)	1197.6 3	65 18	999.07	(19/2 ⁻)	(E2)	1.18×10 ⁻³	$\begin{split} &\alpha(\text{K}){=}0.001009 \ 15; \ \alpha(\text{L}){=}0.0001283 \ 18; \ \alpha(\text{M}){=}2.61{\times}10^{-5} \ 4 \\ &\alpha(\text{N}){=}5.51{\times}10^{-6} \ 8; \ \alpha(\text{O}){=}7.66{\times}10^{-7} \ 11; \ \alpha(\text{P}){=}3.75{\times}10^{-8} \ 6; \\ &\alpha(\text{IPF}){=}6.14{\times}10^{-6} \ 10 \\ &\text{E}_{\gamma}: \text{ weighted average of 1196.9 } 6 \ \text{from } (^{64}\text{Ni},\text{p4n}\gamma), \ 1198.0 \ 7 \ \text{from} \\ &(^{28}\text{Si},\text{p4n}\gamma), \ \text{and} \ 1197.7 \ 3 \ \text{from} \ (^{19}\text{F},4n\gamma). \\ &\text{I}_{\gamma}: \ \text{from } (^{64}\text{Ni},\text{p4n}\gamma). \ \text{Others: } 118 \ 24 \ \text{from } (^{28}\text{Si},\text{p4n}\gamma), \ \text{and} \ \approx 50 \ \text{from} \\ &(^{19}\text{F},4n\gamma). \\ &\text{Additional information } 10. \end{split}$
2219.6	(19/2+)	1060.0 <i>6</i> 1220.4 <i>6</i>	100 22 86 22	1159.6 999.07	$(17/2^{-})$ $(19/2^{-})$			
2410.7	(21/2 ⁺)	406.7 6	49 80	2003.7	(19/2+)			 E_γ: weighted average of 406.9 6 from (⁶⁴Ni,p4nγ) and 406.5 7 from (²⁸Si,p4nγ). I_γ: weighted average of 60 10 from (⁶⁴Ni,p4nγ) and 42 8 from (²⁸Si,p4nγ).
		416.0 <i>3</i>	43 18	1994.71	(19/2+)			E _{γ} : weighted average of 415.8 6 from (⁶⁴ Ni,p4n γ), 415.4 7 from (²⁸ Si,p4n γ), and 416.2 3 from (¹⁹ F,4n γ). I _{γ} : unweighted average of 60 <i>10</i> from (⁶⁴ Ni,p4n γ) and 25 8 from (²⁸ Si p4n γ). Other: ~50 from (¹⁹ F 4n γ)
		805.6 <i>3</i>	100 15	1605.16	(17/2 ⁺)	(E2)	0.00279	$\begin{aligned} &\alpha(K) = 0.00239 \ 4; \ \alpha(L) = 0.000319 \ 5; \ \alpha(M) = 6.53 \times 10^{-5} \ 10 \\ &\alpha(N) = 1.375 \times 10^{-5} \ 20; \ \alpha(O) = 1.89 \times 10^{-6} \ 3; \ \alpha(P) = 8.80 \times 10^{-8} \ 13 \\ & E_{\gamma}: \text{ weighted average of } 805.5 \ 6 \ \text{from } (^{64}\text{Ni}, \text{p4n}\gamma), \ 804.9 \ 7 \ \text{from} \\ &(^{28}\text{Si}, \text{p4n}\gamma), \ \text{and } 805.7 \ 3 \ \text{from } (^{19}\text{F}, \text{4n}\gamma). \\ & I_{\gamma}: \ \text{from } (^{64}\text{Ni}, \text{p4n}\gamma). \ \text{Others: } 100 \ 21 \ \text{from } (^{28}\text{Si}, \text{p4n}\gamma), \ 100 \ 50 \ \text{from} \\ &(^{19}\text{F}, \text{4n}\gamma). \\ & \text{Additional information } 11. \end{aligned}$
2436.3	(25/2 ⁻)	706.8 3	71 <i>13</i>	1729.7	(21/2 ⁻)	(E2)	0.00381	$\begin{aligned} &\alpha(K) = 0.00326 \ 5; \ \alpha(L) = 0.000445 \ 7; \ \alpha(M) = 9.13 \times 10^{-5} \ 13 \\ &\alpha(N) = 1.92 \times 10^{-5} \ 3; \ \alpha(O) = 2.62 \times 10^{-6} \ 4; \ \alpha(P) = 1.195 \times 10^{-7} \ 17 \\ & E_{\gamma}: \ weighted \ average \ of \ 706.9 \ 4 \ from \ (^{64}Ni,p4n\gamma), \ 706.6 \ 5 \ from \ (^{28}Si,p4n\gamma), \ and \ 706.9 \ 3 \ from \ (^{19}F,4n\gamma). \\ & I_{\gamma}: \ unweighted \ average \ of \ 52 \ 6 \ from \ (^{64}Ni,p4n\gamma), \ 95 \ 9 \ from \ (^{28}Si,p4n\gamma), \ and \ 67 \ 34 \ from \ (^{19}F,4n\gamma). \\ & Additional \ information \ 12. \end{aligned}$
		751.7 3	100 <i>9</i>	1684.6	(23/2 ⁻)	(M1)	0.00450	$\begin{aligned} \alpha(K) &= 0.00389 \ 6; \ \alpha(L) &= 0.000489 \ 7; \ \alpha(M) &= 9.96 \times 10^{-5} \ 14 \\ \alpha(N) &= 2.11 \times 10^{-5} \ 3; \ \alpha(O) &= 2.95 \times 10^{-6} \ 5; \ \alpha(P) &= 1.494 \times 10^{-7} \ 21 \\ E_{\gamma}: \ weighted \ average \ of \ 751.8 \ 4 \ from \ (^{64}Ni,p4n\gamma), \ 751.9 \ 5 \ from \\ (^{28}Si,p4n\gamma), \ and \ 751.5 \ 3 \ from \ (^{19}F,4n\gamma). \\ I_{\gamma}: \ from \ (^{28}Si,p4n\gamma). \ Others: \ 100 \ 11 \ from \ (^{64}Ni,p4n\gamma), \ 100 \ 34 \ from \\ (^{19}F,4n\gamma). \\ Additional \ information \ 13 \end{aligned}$
2446.2 2485.2	(21/2 ⁺) (27/2 ⁻)	1447.3 7 800.5 2	100 100	999.07 1684.6	(19/2 ⁻) (23/2 ⁻)	E2	0.00283	B(E2)(W.u.)=139 + 30 - 21
I								

From ENSDF

						Adop	oted Levels, Gar	mmas (continued)
							$\gamma(^{123}\text{Cs})$ (co	ontinued)
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	a^{\dagger}	Comments
								$\begin{aligned} &\alpha(\text{K})=0.00242 \ 4; \ \alpha(\text{L})=0.000324 \ 5; \ \alpha(\text{M})=6.64\times10^{-5} \ 10 \\ &\alpha(\text{N})=1.397\times10^{-5} \ 20; \ \alpha(\text{O})=1.92\times10^{-6} \ 3; \ \alpha(\text{P})=8.93\times10^{-8} \ 13 \\ &\text{E}_{\gamma}: \text{ weighted average of } 800.5 \ 2 \ \text{from } (^{64}\text{Ni},\text{p4n}\gamma), \ 801 \ 1 \ \text{from } (^{34}\text{S},3\text{p}\gamma), \\ &800.5 \ 5 \ \text{from } (^{28}\text{Si},\text{p4n}\gamma), \ 800.6 \ 3 \ \text{from } (^{19}\text{F},4\text{n}\gamma), \ \text{and } 800.1 \ 3 \ \text{from } (^{10}\text{B},3\text{n}\gamma). \end{aligned}$
2706.3	(23/2 ⁺)	486.7 6	100 22	2219.6	(19/2+)	(E2)	0.01014	α (K)=0.00855 <i>13</i> ; α (L)=0.001272 <i>19</i> ; α (M)=0.000263 <i>4</i> α (N)=5.49×10 ⁻⁵ <i>8</i> ; α (O)=7.37×10 ⁻⁶ <i>11</i> ; α (P)=3.06×10 ⁻⁷ <i>5</i> Additional information 14.
		711.6 6	44 11	1994.71	$(19/2^+)$			
		976.7 6 1021.9 6	89 22	1729.7 1684.6	$(21/2^{-})$ $(23/2^{-})$	(E1)	0.000693 10	α =0.000693 <i>10</i> ; α (K)=0.000602 <i>9</i> ; α (L)=7.32×10 ⁻⁵ <i>11</i> ; α (M)=1.484×10 ⁻⁵
								$\alpha(N)=3.13\times10^{-6} 5; \ \alpha(O)=4.38\times10^{-7} 7; \ \alpha(P)=2.19\times10^{-8} 3$ E _{γ} : weighted average of 1021.6 6 from (⁶⁴ Ni,p4n γ) and 1022.2 7 from (²⁸ Si,p4n γ). Additional information 15.
2821.4	(23/2+)	410.6 3	73 17	2410.7	(21/2+)			 E_γ: weighted average of 410.8 <i>6</i> from (⁶⁴Ni,p4nγ), 411.0 7 from (²⁸Si,p4nγ), and 410.5 <i>3</i> from (¹⁹F,4nγ). I_γ: unweighted average of 90 <i>10</i> from (⁶⁴Ni,p4nγ) and 56 <i>12</i> from (²⁸Si p4nγ)
		817.8 6	80 16	2003.7	(19/2+)			E_{γ} : weighted average of 817.7 6 from (⁶⁴ Ni,p4n γ) and 818.0 7 from (²⁸ Si,p4n γ). L : from (²⁸ Si p4n γ).
		826.7 3	100 13	1994.71	(19/2+)			E _{γ} : weighted average of 826.6 <i>6</i> from (⁶⁴ Ni,p4n γ), 826.5 7 from (²⁸ Si,p4n γ), and 826.7 <i>3</i> from (¹⁹ F,4n γ).
2843.6	(23/2+)	433.0 6	63 <i>13</i>	2410.7	(21/2 ⁺)			E_{γ} : weighted average of 432.7 6 from (⁶⁴ Ni,p4n γ) and 433.5 7 from (²⁸ Si,p4n γ).
		839.7 6	56 13	2003.7	(19/2+)			E_{γ} : weighted average of 839.6 6 from (⁶⁴ Ni,p4n γ) and 839.8 7 from (²⁸ Si,p4n γ).
		849.1 6	100 <i>19</i>	1994.71	(19/2+)			I_{γ} : from (⁴⁷ N ₁ ,p4n γ). Other: 159 30 from (²⁸ S ₁ ,p4n γ). E_{γ} : weighted average of 848.6 6 from (⁶⁴ N ₁ ,p4n γ) and 849.8 7 from (²⁸ S ₁ ,p4n γ).
2917.5	(27/2 ⁻)	721.0 3	100 20	2196.4	(23/2 ⁻)	(E2)	0.00363	I _γ : from (⁹⁴ Ni,p4nγ). Other: 100 21 from (²⁸ Si,p4nγ). $\alpha(K)$ =0.00310 5; $\alpha(L)$ =0.000423 6; $\alpha(M)$ =8.67×10 ⁻⁵ 13 $\alpha(N)$ =1.82×10 ⁻⁵ 3; $\alpha(O)$ =2.49×10 ⁻⁶ 4; $\alpha(P)$ =1.139×10 ⁻⁷ 16 E _γ : weighted average of 721.0 6 from (⁶⁴ Ni,p4nγ), 720.9 7 from (²⁸ Si,p4nγ), and 721.0 3 from (¹⁹ F,4nγ). I _γ : (⁶⁴ Ni,p4nγ). Others: 100 22 from (²⁸ Si,p4nγ), 100 50 from (¹⁹ F,4nγ). Additional information 16.

From ENSDF

 $^{123}_{55}\mathrm{Cs}_{68}$ -14

						Add	opted Levels, G	ammas (continued)
							$\gamma(^{123}\mathrm{Cs})$	(continued)
	E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E _f J	\int_{f}^{π} Mult. [‡]	α^{\dagger}	Comments
	2917.5	(27/2 ⁻)	1233.1 3	55 11	1684.6 (23)	/2 ⁻) (E2)	1.11×10 ⁻³	$\alpha(K)=0.000951 \ 14; \ \alpha(L)=0.0001205 \ 17; \ \alpha(M)=2.45\times10^{-5} \ 4$ $\alpha(N)=5.18\times10^{-6} \ 8; \ \alpha(O)=7.20\times10^{-7} \ 10; \ \alpha(P)=3.53\times10^{-8} \ 5;$ $\alpha(IPF)=1.075\times10^{-5} \ 16$ $E_{\gamma}:$ weighted average of 1232.4 6 from (⁶⁴ Ni,p4n\gamma), 1233.0 7 from
	2072.2	(25/2+)	1000 (4	100	1684 6 (22	/2 -) (E1)	0.000521.9	$({}^{28}Si,p4n\gamma)$, and 1233.3 <i>3</i> from $({}^{19}F,4n\gamma)$. I _y : weighted average of 70 <i>20</i> from $({}^{64}Ni,p4n\gamma)$ and 50 <i>11</i> from $({}^{28}Si,p4n\gamma)$. Other: ?50 from $({}^{19}F,4n\gamma)$. Additional information 17.
	2915.5	(23/2)	1288.0 4	100	1084.0 (23,	(2) (E1)	0.000331-8	$\begin{aligned} &\alpha(M) = 9.67 \times 10^{-6} \ I4 \\ &\alpha(N) = 2.04 \times 10^{-6} \ 3; \ \alpha(O) = 2.86 \times 10^{-7} \ 4; \ \alpha(P) = 1.442 \times 10^{-8} \ 2I; \\ &\alpha(IPF) = 7.58 \times 10^{-5} \ I1 \end{aligned}$
	2045 5	(25/2+)	202.0.7		2942 ((22	(2+)		 E_γ: weighted average of 1288.5 4 from (⁶⁴Ni,p4nγ) and 1288.7 5 from (²⁸Si,p4nγ). Additional information 18.
1	3043.3	(23/2)	202.0 7 224.1 <i>4</i>	69 <i>10</i>	2845.0 (25) 2821.4 (23)	/2 ⁺) (M1)	0.0962	$\alpha(K)=0.0827 \ 13; \ \alpha(L)=0.01082 \ 16; \ \alpha(M)=0.00221 \ 4$ $\alpha(N)=0.000468 \ 7; \ \alpha(O)=6.52\times10^{-5} \ 10; \ \alpha(P)=3.23\times10^{-6} \ 5$ $E_{\gamma}: weighted average of 224.2 \ 4 \ from (^{64}Ni,p4n\gamma) \ and \ 223.9 \ 7 \ from (^{28}Si,p4n\gamma).$
			599.5 7	32.8	2446.2 (21)	/2+)		 I_γ: weighted average of 65 10 from (⁶⁴Ni,p4nγ) and 80 16 from (²⁸Si,p4nγ). Additional information 19. E_v,I_v: from (²⁸Si,p4nγ) only.
			1360.9 4	100 12	1684.6 (23)	/2 ⁻) (E1)	0.000534 8	$\alpha = 0.000534 \ 8; \ \alpha(K) = 0.000359 \ 5; \ \alpha(L) = 4.33 \times 10^{-5} \ 6; \alpha(M) = 8.78 \times 10^{-6} \ 13 \alpha(N) = 1.86 \times 10^{-6} \ 3; \ \alpha(O) = 2.60 \times 10^{-7} \ 4; \ \alpha(P) = 1.312 \times 10^{-8} \ 19; \alpha(IPE) = 0.0001203 \ 17$
	3227.0	(29/2 ⁻)	741.8 <i>3</i>	58 <i>13</i>	2485.2 (27,	/2 ⁻) (M1)	0.00465	$I_{\gamma}: \text{ from } ({}^{64}\text{Ni},\text{p4n}\gamma). \text{ Other: } 100 \ 20 \ \text{from } ({}^{28}\text{Si},\text{p4n}\gamma).$ Additional information 20. $\alpha(\text{K})=0.00401 \ 6; \ \alpha(\text{L})=0.000505 \ 7; \ \alpha(\text{M})=0.0001029 \ 15$ $\alpha(\text{N})=2.18\times10^{-5} \ 3; \ \alpha(\text{O})=3.05\times10^{-6} \ 5; \ \alpha(\text{P})=1.542\times10^{-7} \ 22$ $E_{\gamma}: \text{ weighted average of } 742.0 \ 4 \ \text{from } ({}^{64}\text{Ni},\text{p4n}\gamma), \ 742.9 \ 7 \ \text{from } ({}^{28}\text{Si},\text{p4n}\gamma), \text{ and } 741.4 \ 3 \ \text{from } ({}^{19}\text{F},\text{4n}\gamma).$
			790.9 <i>3</i>	100 11	2436.3 (25,	/2 ⁻) (E2)	0.00291	$ I_{\gamma}: \text{ from } (^{28}\text{Si},\text{p4n}\gamma). \text{ Others: } 143 \ 17 \ \text{from } (^{64}\text{Ni},\text{p4n}\gamma), ≈50 \ \text{from } (^{19}\text{F},4n\gamma). $ Additional information 21. $ \alpha(\text{K})=0.00249 \ 4; \ \alpha(\text{L})=0.000334 \ 5; \ \alpha(\text{M})=6.84\times10^{-5} \ 10 \\ \alpha(\text{N})=1.440\times10^{-5} \ 21; \ \alpha(\text{O})=1.98\times10^{-6} \ 3; \ \alpha(\text{P})=9.18\times10^{-8} \ 13 \\ \text{E}_{\gamma}: \text{ weighted average of } 790.7 \ 4 \ \text{from } (^{64}\text{Ni},\text{p4n}\gamma), \ 790.8 \ 5 \ \text{from } (^{28}\text{Si},\text{p4n}\gamma), \text{ and } 791.0 \ 3 \ \text{from } (^{19}\text{F},4n\gamma). $

$\gamma(^{123}Cs)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. [‡]	α^{\dagger}	Comments
3304.8	(27/2+)	259.3 6	100 16	3045.5 ((25/2+)	(M1)	0.0652	I _γ : from (²⁸ Si,p4nγ). Others: 100 <i>16</i> from (⁶⁴ Ni,p4nγ), 100 <i>20</i> from (¹⁹ F,4nγ). Additional information 22. α (K)=0.0561 <i>9</i> ; α (L)=0.00730 <i>12</i> ; α (M)=0.001493 <i>23</i> α (N)=0.000316 <i>5</i> ; α (O)=4.41×10 ⁻⁵ <i>7</i> ; α (P)=2.19×10 ⁻⁶ <i>4</i>
		331.5 6	109 <i>16</i>	2973.3 ((25/2+)	(M1)	0.0343	E _γ : weighted average of 259.2 6 from (⁶⁴ Ni,p4nγ) and 259.5 7 from (²⁸ Si,p4nγ). Additional information 23. I _γ : from (⁶⁴ Ni,p4nγ). Other: 100 22 from (²⁸ Si,p4nγ). $\alpha(K)=0.0295 5$; $\alpha(L)=0.00381 6$; $\alpha(M)=0.000779 12$ $\alpha(N)=0.0001648 25$; $\alpha(Q)=2.30\times10^{-5} 4$; $\alpha(P)=1.148\times10^{-6} 17$
								E_{γ} : weighted average of 331.6 <i>6</i> from (⁶⁴ Ni,p4n γ) and 331.3 7 from (²⁸ Si,p4n γ). I_{γ} : from (⁶⁴ Ni,p4n γ), normalized to I(259.3 γ)=100. Other: 32 7 from (²⁸ Si,p4n γ). Additional information 24.
		483.4 6 598 5 6	59 <i>13</i> 125 25	2821.4 ($(23/2^+)$ $(23/2^+)$	(F2)	0.00580	I_{γ} : from (⁶⁴ Ni,p4n γ) only, normalized to I(259.3 γ)=100. $\alpha(K) = 0.00493.7; \alpha(I) = 0.000697.10; \alpha(M) = 0.0001434.21$
		570.5 0	125 25	2700.5	(23/2)	(L2)	0.00500	$\alpha(N)=3.01\times10^{-5} 5; \alpha(O)=4.08\times10^{-6} 6; \alpha(P)=1.79\times10^{-7} 3$
								I_{γ} : from (⁶⁴ Ni,p4n γ) only, normalized to I(259.3 γ)=100. Additional information 25
3329.8	$(27/2^+)$	284.3 6	116 40	3045.5 ($(25/2^+)$	(M1)	0.0512	$\alpha(K)=0.0440$ 7; $\alpha(L)=0.00572$ 9; $\alpha(M)=0.001168$ 18
								$\alpha(N)=0.0002474; \alpha(O)=3.45\times10^{-5}6; \alpha(P)=1.72\times10^{-6}3$ E _{γ} : weighted average of 284.2 6 from (⁶⁴ Ni,p4n γ) and 284.5 7 from (²⁸ Si,p4n γ). Additional information 26.
								I _{γ} : unweighted average of 76 <i>10</i> from (⁶⁴ Ni,p4n γ) and 156 <i>31</i> from (²⁸ Si,p4n γ), normalized to I(623 5 γ)=100
		356.3 6	23 9	2973.3 ($(25/2^+)$	(M1)	0.0285	$\alpha(K)=0.0245$ 4; $\alpha(L)=0.00316$ 5; $\alpha(M)=0.000645$ 10
								$\alpha(N)=0.0001366\ 20;\ \alpha(O)=1.91\times10^{-5}\ 3;\ \alpha(P)=9.53\times10^{-7}\ 14$ E : weighted average of 356.5.6 from (⁶⁴ Ni p4pa) and 356.0.7 from (²⁸ Si p4pa)
								I_{γ} : unweighted average of 14 4 from (⁶⁴ Ni,p4n γ) and 31 6 from (²⁸ Si,p4n γ). Additional information 27.
		508.4 6	24 7	2821.4 ($(23/2^+)$		0.00500	E_{γ}, I_{γ} : from (⁶⁴ Ni,p4n γ) only.
		023.3 0	100 14	2700.3 ($(23/2^{+})$	(E2)	0.00522	$\alpha(\mathbf{K})=0.004447$; $\alpha(\mathbf{L})=0.0006239$; $\alpha(\mathbf{M})=0.000128079$ $\alpha(\mathbf{N})=2.69\times10^{-5}4$; $\alpha(\mathbf{O})=3.65\times10^{-6}6$; $\alpha(\mathbf{P})=1.620\times10^{-7}23$
								E_{γ} : weighted average of 623.5 6 from (⁶⁴ Ni,p4n γ) and 623.5 7 from (²⁸ Si,p4n γ). I_{γ} : from (⁶⁴ Ni,p4n γ). Other: 100 <i>19</i> from (²⁸ Si,p4n γ).
								Additional information 28.
3353.5	(31/2 ⁻)	868.3 2	100	2485.2 ((27/2 ⁻)	E2	0.00235	$\alpha(K)=0.00201 \ 3; \ \alpha(L)=0.000266 \ 4; \ \alpha(M)=5.44\times10^{-3} \ 8 \\ \alpha(N)=1.145\times10^{-5} \ 16; \ \alpha(O)=1.577\times10^{-6} \ 22; \ \alpha(P)=7.43\times10^{-8} \ 11 \\ B(E2)(W.u.)=137 \ +29-21$
								E_{γ} : weighted average of 868.3 2 from (⁶⁴ Ni,p4nγ), 869 <i>1</i> from (³⁴ S,3pγ), 868.4 5 from (²⁸ Si,p4nγ), 868.3 <i>3</i> from (¹⁹ F,4nγ), and 868.0 <i>4</i> from (¹⁰ B,3nγ).
3618.0	(29/2+)	288.3 6	28 9	3329.8 ((27/2 ⁺)			E_{γ} : weighted average of 288.2 6 from (⁶⁴ Ni,p4n γ) and 288.5 7 from (²⁸ Si,p4n γ). I_{γ} : unweighted average of 19 4 from (⁶⁴ Ni,p4n γ) and 36 8 from (²⁸ Si,p4n γ).

16

					Ade	opted Levels, (Sammas (continued)
						$\gamma(^{123}\mathrm{Cs})$	(continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	α^{\dagger}	Comments
3618.0	(29/2+)	313.2 4	91 11	3304.8 (27/2+)	(M1)	0.0397	$\alpha(K)=0.0342 5; \alpha(L)=0.00443 7; \alpha(M)=0.000904 13$ $\alpha(N)=0.000191 3; \alpha(O)=2.67\times10^{-5} 4; \alpha(P)=1.331\times10^{-6} 20$ $E_{\gamma}:$ weighted average of 313.2 4 from (⁶⁴ Ni,p4n γ) and 313.0 7 from (²⁸ Si p4n γ).
		644.7 <i>4</i>	100 11	2973.3 (25/2 ⁺)	(E2)	0.00480	I _γ : weighted average of 90 <i>11</i> from (⁶⁴ Ni,p4nγ) and 96 <i>20</i> from (²⁸ Si,p4nγ). Additional information 29. α (K)=0.00408 6; α (L)=0.000568 8; α (M)=0.0001167 <i>17</i> α (N)=2.45×10 ⁻⁵ 4; α (O)=3.34×10 ⁻⁶ 5; α (P)=1.492×10 ⁻⁷ 21
							E_{γ} : weighted average of 644.7 4 from (⁶⁴ Ni,p4n γ) and 644.5 7 from (²⁸ Si,p4n γ). I _{γ} : from (⁶⁴ Ni,p4n γ). Other: 100 20 from (²⁸ Si,p4n γ). Additional information 30.
		1132.9 4	63 11	2485.2 (27/2 ⁻)	(E1)	0.000580 9	$\alpha = 0.000580 \ 9; \ \alpha(\text{K}) = 0.000497 \ 7; \ \alpha(\text{L}) = 6.03 \times 10^{-5} \ 9; \\ \alpha(\text{M}) = 1.222 \times 10^{-5} \ 18 \\ \alpha(\text{N}) = 2.58 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 3.61 \times 10^{-7} \ 5; \ \alpha(\text{P}) = 1.81 \times 10^{-8} \ 3; \\ \alpha(\text{IPF}) = 7.68 \times 10^{-6} \ 14$
							 E_γ: weighted average of 1132.8 4 from (⁶⁴Ni,p4nγ) and 1133.1 7 from (²⁸Si,p4nγ). I_γ: weighted average of 65 11 from (⁶⁴Ni,p4nγ) and 60 12 from
3728.9	(31/2 ⁻)	811.4 3	100 24	2917.5 (27/2 ⁻)			 (²⁸Si,p4nγ). E_γ: weighted average of 811.5 6 from (⁶⁴Ni,p4nγ), 811.1 7 from (²⁸Si,p4nγ), and 811.4 3 from (¹⁹F,4nγ). I. from (⁶⁴Ni p4nγ) and (²⁸Si p4nγ).
		1243.7 3	63 18	2485.2 (27/2 ⁻)	(E2)	1.10×10 ⁻³	$\alpha(K)=0.000935 \ 13; \ \alpha(L)=0.0001183 \ 17; \ \alpha(M)=2.41\times10^{-5} \ 4 \\ \alpha(N)=5.09\times10^{-6} \ 8; \ \alpha(O)=7.07\times10^{-7} \ 10; \ \alpha(P)=3.47\times10^{-8} \ 5; \\ \alpha(IPF)=1.232\times10^{-5} \ 18$
							 E_γ: weighted average of 1243.4 <i>6</i> from (⁶⁴Ni,p4nγ), 1243.2 7 from (²⁸Si,p4nγ), and 1243.8 <i>3</i> from (¹⁹F,4nγ). I_γ: weighted average of 50 <i>13</i> from (⁶⁴Ni,p4nγ) and 88 <i>18</i> from (²⁸Si p4nγ)
3995.1	(31/2+)	377.1 4	100 9	3618.0 (29/2 ⁺)	(M1)	0.0246	Additional information 31. $\alpha(K)=0.0212 \ 3; \ \alpha(L)=0.00273 \ 4; \ \alpha(M)=0.000557 \ 8$ $\alpha(N)=0.0001179 \ 17; \ \alpha(O)=1.647\times10^{-5} \ 24; \ \alpha(P)=8.23\times10^{-7} \ 12$ E_{γ} : weighted average of 377.1 4 from (⁶⁴ Ni,p4ny) and 377.3 7 from $(^{28}Si; \ a4m)$
		690.3 <i>4</i>	73 9	3304.8 (27/2 ⁺)			$(^{51,p+11\gamma})$. I_{γ} : from (⁶⁴ Ni,p4n γ). Other: 100 <i>19</i> from (²⁸ Si,p4n γ). Additional information 32. E_{γ} : weighted average of 690.3 <i>4</i> from (⁶⁴ Ni,p4n γ) and 690.3 7 from (²⁸ Si,p4n γ).

$\gamma(^{123}Cs)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{\dagger}	Comments
4045.4	(31/2+)	715.6 4	100 15	3329.8	(27/2+)	(E2)	0.00370	I _γ : weighted average of 74 9 from (⁶⁴ Ni,p4nγ) and 69 15 from (²⁸ Si,p4nγ). $\alpha(K)=0.00316$ 5; $\alpha(L)=0.000431$ 6; $\alpha(M)=8.84\times10^{-5}$ 13 $\alpha(N)=1.86\times10^{-5}$ 3; $\alpha(O)=2.54\times10^{-6}$ 4; $\alpha(P)=1.160\times10^{-7}$ 17 Additional information 33.
4055.3	(33/2-)	740.6 <i>6</i> 701.7 <i>3</i>	17 5 100 <i>14</i>	3304.8 3353.5	(27/2 ⁺) (31/2 ⁻)	(M1)	0.00531	E_{γ} , I_{γ} : from (⁶⁴ Ni,p4nγ) only. α (K)=0.00458 7; α (L)=0.000577 9; α (M)=0.0001176 17 α (N)=2.49×10 ⁻⁵ 4; α (O)=3.49×10 ⁻⁶ 5; α (P)=1.761×10 ⁻⁷ 25 E_{γ} : weighted average of 701.9 4 from (⁶⁴ Ni,p4nγ), 701.5 7 from (²⁸ Si,p4nγ),
		828.4 <i>3</i>	75 12	3227.0	(29/2 ⁻)	(E2)	0.00261	and 701.7 <i>3</i> from (¹⁹ F,4n γ). I _{γ} : from (⁶⁴ Ni,p4n γ). Other: 100 24 from (²⁸ Si,p4n γ). Additional information 34. α (K)=0.00224 4; α (L)=0.000298 5; α (M)=6.10×10 ⁻⁵ 9 α (N)=1.284×10 ⁻⁵ 18; α (O)=1.766×10 ⁻⁶ 25; α (P)=8.26×10 ⁻⁸ 12 E _{γ} : weighted average of 828.2 6 from (⁶⁴ Ni,p4n γ), 828.5 7 from (²⁸ Si,p4n γ),
4258.2	(35/2-)	904.64 3	100	3353.5	$(31/2^{-})$	E2	0.00214	and 828.4 <i>3</i> from (¹⁹ F,4n γ). I _{γ} : weighted average of 68 <i>11</i> from (⁶⁴ Ni,p4n γ) and 94 <i>18</i> from (²⁸ Si,p4n γ). Additional information 35. α (K)=0.00184 <i>3</i> : α (L)=0.000241 <i>4</i> : α (M)=4.93×10 ⁻⁵ <i>7</i>
	(00/2)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100		(01)=)		0.00211	$\alpha(N) = 1.038 \times 10^{-5} \ I5; \ \alpha(O) = 1.432 \times 10^{-6} \ 20; \ \alpha(P) = 6.79 \times 10^{-8} \ I0$ B(E2)(W.u.)=117 +34–18 E _{γ} : weighted average of 904.9 2 from (⁶⁴ Ni,p4n γ), 906 1 from (³⁴ S,3p γ),
4408.4	(33/2+)	413.2 6	100 15	3995.1	(31/2+)	(M1)	0.0195	904.8 5 from (²⁸ Si,p4n γ), and 904.63 3 from (¹⁹ F,4n γ). α (K)=0.01682 25; α (L)=0.00216 4; α (M)=0.000440 7 α (N)=9.32×10 ⁻⁵ 14; α (O)=1.302×10 ⁻⁵ 19; α (P)=6.52×10 ⁻⁷ 10 E _{γ} : weighted average of 413.0 6 from (⁶⁴ Ni,p4n γ) and 413.4 7 from
		700 4 6	102.21	2618.0	(20/2+)	(E2)	0.00202	$(^{28}\text{Si},p4n\gamma).$ I_{γ} : from $(^{64}\text{Ni},p4n\gamma)$. Other: 100 24 from $(^{28}\text{Si},p4n\gamma)$. Additional information 36. $(W) = 0.00250.4t_{\gamma}(V) = 0.000225.5t_{\gamma}(M) = (.85)(10^{-5}, 10^{-5})$
		790.4 0	103 21	3018.0	(29/2*)	(E2)	0.00292	$\begin{aligned} \alpha(\mathbf{N}) &= 0.00250 \ 4; \ \alpha(\mathbf{L}) = 0.000355 \ 5; \ \alpha(\mathbf{M}) = 6.85 \times 10^{-6} \ 10 \\ \alpha(\mathbf{N}) &= 1.442 \times 10^{-5} \ 21; \ \alpha(\mathbf{O}) = 1.98 \times 10^{-6} \ 3; \ \alpha(\mathbf{P}) = 9.20 \times 10^{-8} \ 13 \\ \mathbf{E}_{\gamma}: \text{ weighted average of 790.1 } 6 \text{ from } (^{64}\text{Ni},\text{p4n}\gamma) \text{ and 790.8 } 7 \text{ from} \\ (^{28}\text{Si},\text{p4n}\gamma). \end{aligned}$
4620.7	(35/2-)	891.8 <i>3</i>	100	3728.9	(31/2 ⁻)			I _y : unweighted average of 123 <i>19</i> from (⁶⁴ Ni,p4n γ) and 82 <i>18</i> from (²⁸ Si,p4n γ). Additional information 37. E _y : weighted average of 892.0 <i>6</i> from (⁶⁴ Ni,p4n γ), 891.9 7 from (²⁸ Si,p4n γ),
4834.1	(35/2+)	425.8 6	48 16	4408.4	(33/2+)	(M1)	0.0181	and 891.8 3 from (¹⁹ F,4n γ). α (K)=0.01559 23; α (L)=0.00200 3; α (M)=0.000408 6 α (N)=8.63×10 ⁻⁵ 13; α (O)=1.206×10 ⁻⁵ 18; α (P)=6.04×10 ⁻⁷ 9 E $_{\gamma}$: weighted average of 425.6 6 from (⁶⁴ Ni,p4n γ) and 426.0 7 from (²⁸ Si,p4n γ).
								I_{γ} : unweighted average of 64 12 from ($^{9+}$ Ni,p4n γ) and 32 11 from (20 Si,p4n γ). Additional information 38.

18

$\gamma(^{123}Cs)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ} ‡	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{\dagger}	Comments
4834.1	(35/2+)	838.9 6	100 16	3995.1	(31/2+)	(E2)	0.00254	$\alpha(K)=0.00218 \ 3; \ \alpha(L)=0.000289 \ 4; \ \alpha(M)=5.91\times10^{-5} \ 9 \\ \alpha(N)=1.245\times10^{-5} \ 18; \ \alpha(O)=1.713\times10^{-6} \ 25; \ \alpha(P)=8.03\times10^{-8} \ 12 \\ E_{\gamma}: \text{ weighted average of } 838.6 \ 6 \ \text{from } (^{64}\text{Ni},p4n\gamma) \text{ and } 839.4 \ 7 \ \text{from } (^{28}\text{Si},p4n\gamma).$
49(2.2	(25/2+)	817.0.4	100	4045 4	(21/2+)	(E2)	0.002(0	I_{γ} : from (⁶⁴ Ni,p4n γ). Other: 100 21 from (²⁸ Si,p4n γ). Additional information 39.
4803.3	(35/2*)	817.94	100	4045.4	(31/2)	(E2)	0.00269	$\alpha(K)=0.002314; \ \alpha(L)=0.0003085; \ \alpha(M)=6.29\times10^{-9}9$ $\alpha(N)=1.325\times10^{-5}19; \ \alpha(O)=1.82\times10^{-6}3; \ \alpha(P)=8.51\times10^{-8}12$ $E_{\gamma}: weighted average of 817.84 from (^{64}Ni,p4n\gamma) and 818.05 from (^{28}Si,p4n\gamma).$
4933.6	(37/2-)	675.6 6	100 14	4258.2	(35/2-)	(M1)	0.00581	Additional information 40. $\alpha(K)=0.00502 \ 8; \ \alpha(L)=0.000633 \ 9; \ \alpha(M)=0.0001290 \ 19$
								$\alpha(N)=2.73\times10^{-5}$ 4; $\alpha(O)=3.82\times10^{-6}$ 6; $\alpha(P)=1.93\times10^{-7}$ 3 E _{γ} : weighted average of 675.5 6 from (⁶⁴ Ni,p4n γ) and 675.8 7 from (²⁸ Si,p4n γ).
								I_{γ} : from (⁶⁴ Ni,p4n γ). Other: 100 24 from (²⁸ Si,p4n γ). Additional information 41.
		878.3 6	75 12	4055.3	(33/2 ⁻)	(E2)	0.00229	$\alpha(K)=0.00196\ 3;\ \alpha(L)=0.000259\ 4;\ \alpha(M)=5.29\times10^{-5}\ 8$ $\alpha(N)=1.114\times10^{-5}\ 16;\ \alpha(O)=1.535\times10^{-6}\ 22;\ \alpha(P)=7.25\times10^{-8}\ 11$ E _y : weighted average of 878.5 6 from (⁶⁴ Ni,p4ny) and 878.0 7 from
								(²⁵ Si,p4n γ). I _{γ} : weighted average of 89 <i>14</i> from (⁶⁴ Ni,p4n γ) and 65 <i>12</i> from (²⁸ Si,p4n γ). Additional information 42.
5213.9	$(39/2^{-})$	280.3 6	5.5 14	4933.6	(37/2 ⁻)			E_{γ}, I_{γ} : from (⁶⁴ Ni,p4n γ) only.
		955.7 2	100	4258.2	(35/2 ⁻)	E2	0.00189	$\alpha(K)=0.001626\ 23;\ \alpha(L)=0.000212\ 3;\ \alpha(M)=4.33\times10^{-5}\ 6$ $\alpha(N)=9.13\times10^{-6}\ 13;\ \alpha(O)=1.261\times10^{-6}\ 18;\ \alpha(P)=6.02\times10^{-8}\ 9$ B(E2)(W.u.)=62 +14-10
								E_{γ} : weighted average of 955.8 2 from (⁶⁴ Ni,p4n γ), 955 <i>I</i> from (³⁴ S,3p γ), 955.0 7 from (²⁸ Si,p4n γ), and 955.5 3 from (¹⁹ E4n γ).
5246.4		988.2 6	100	4258.2	$(35/2^{-})$,
5334.4	$(37/2^+)$	500.4 6	86 22	4834.1	$(35/2^+)$			
5596.9	(39/2 ⁻)	926.0 8 976.2 6	100 22 100	4408.4 4620.7	$(33/2^{-})$ $(35/2^{-})$			E _{γ} : weighted average of 976.0 <i>6</i> from (⁶⁴ Ni,p4n γ) and 976.4 7 from (²⁸ Si p4n γ)
5751.8	(39/2+)	888.5 4	100 14	4863.3	(35/2+)	(E2)	0.00223	$\alpha(K)=0.00191 \ 3; \ \alpha(L)=0.000252 \ 4; \ \alpha(M)=5.14\times10^{-5} \ 8 \ \alpha(N)=1.084\times10^{-5} \ 16; \ \alpha(O)=1.494\times10^{-6} \ 21; \ \alpha(P)=7.06\times10^{-8} \ 10 \ E_{\gamma}: weighted average of 888.4 \ 4 \ from (^{64}Ni,p4n\gamma) and 889.0 \ 7 \ from (^{28}Si,p4n\gamma).$
		91786	23.5	4834 1	$(35/2^+)$			Additional information 4.5. $F_{\rm eff}$ [$from (^{64}Ni p 4ny)$ only
5792.9	(39/2+)	458.5 6 958.9 6	33 <i>11</i> 100 22	5334.4 4834.1	$(37/2^+)$ $(35/2^+)$			<i>Lγ</i> , <i>γ</i> , non (10, <i>μ</i> + <i>nγ</i>) only.

19

 $^{123}_{55}\text{Cs}_{68}$ -19

$\gamma(^{123}Cs)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [‡]	α^{\dagger}	Comments
5905.5	(41/2 ⁻)	691.7 6 971.9 6	95 <i>15</i> 100 <i>20</i>	5213.9 4933.6	(39/2 ⁻) (37/2 ⁻)	(E2)	0.00182	E _γ ,I _γ : from (⁶⁴ Ni,p4nγ) only. α (K)=0.001568 22; α (L)=0.000204 3; α (M)=4.16×10 ⁻⁵ 6 α (N)=8.78×10 ⁻⁶ 13; α (O)=1.213×10 ⁻⁶ 17; α (P)=5.81×10 ⁻⁸ 9
6239.5	(43/2 ⁻)	334.2 <i>6</i> 1025.5 <i>5</i>	2.9 <i>10</i> 100 <i>8</i>	5905.5 5213.9	(41/2 ⁻) (39/2 ⁻)	E2	1.62×10 ⁻³	E _γ : weighted average of 971.8 <i>6</i> from (⁶⁴ Ni,p4nγ) and 972.1 7 from (²⁸ Si,p4nγ). Additional information 44. E _γ ,I _γ : from (⁶⁴ Ni,p4nγ) only. α (K)=0.001396 20; α (L)=0.000180 3; α (M)=3.68×10 ⁻⁵ 6 α (N)=7.76×10 ⁻⁶ 11; α (O)=1.075×10 ⁻⁶ 15; α (P)=5.18×10 ⁻⁸ 8
								B(E2)(W.u.)=74 +16-12 E _γ : unweighted average of 1025.9 2 from (⁶⁴ Ni,p4nγ), 1026 1 from (³⁴ S,3pγ), 1026.0 7 from (²⁸ Si,p4nγ), and 1024.0 3 from (¹⁹ F,4nγ). I _γ : from (⁶⁴ Ni,p4nγ).
6296.8		1050.4 6	100	5246.4				
6670.7	(43/2+)	918.9 <i>4</i>	100	5751.8	(39/2+)	(E2)	0.00206	$\alpha(K)=0.001773\ 25;\ \alpha(L)=0.000232\ 4;\ \alpha(M)=4.75\times10^{-5}\ 7$ $\alpha(N)=1.001\times10^{-5}\ 14;\ \alpha(O)=1.381\times10^{-6}\ 20;\ \alpha(P)=6.56\times10^{-8}\ 10$ $E_{\gamma}:$ weighted average of 918.9 4 from (⁶⁴ Ni,p4n γ) and 919.0 7 from (²⁸ Si,p4n γ). Additional information 45.
6678.8	$(43/2^{-})$	1081.9 6	100	5596.9	$(39/2^{-})$			
6981.2	$(45/2^{-})$	741.6 6	81 19	6239.5	$(43/2^{-})$			
		1075.8 6	100 25	5905.5	(41/2 ⁻)	(E2)	1.46×10^{-3}	α (K)=0.001261 <i>18</i> ; α (L)=0.0001621 <i>23</i> ; α (M)=3.31×10 ⁻⁵ <i>5</i> α (N)=6.97×10 ⁻⁶ <i>10</i> ; α (O)=9.66×10 ⁻⁷ <i>14</i> ; α (P)=4.68×10 ⁻⁸ <i>7</i>
7352.5	$(47/2^{-})$	371.3 6	2.9 15	6981.2	$(45/2^{-})$			E_{γ}, I_{γ} : from (⁶⁴ Ni, p4n γ) only.
		1112.9 <i>4</i>	100 9	6239.5	(43/2 ⁻)	E2	1.36×10 ⁻³ 2	$\alpha(K)=0.001175 \ 17; \ \alpha(L)=0.0001504 \ 21; \ \alpha(M)=3.07\times10^{-5} \ 5 \\ \alpha(N)=6.47\times10^{-6} \ 9; \ \alpha(O)=8.97\times10^{-7} \ 13; \ \alpha(P)=4.36\times10^{-8} \ 7; \\ \alpha(IPF)=6.48\times10^{-7} \ 13 \\ B(E2)(W,u)=89 \ +40-22$
								E _y : weighted average of 1112.9 4 from (⁶⁴ Ni,p4n γ), 1113 <i>I</i> from (³⁴ S,3p γ), and 1113.0 7 from (²⁸ Si,p4n γ). Other: 1108 from (¹⁹ F,4n γ).
7412.0		111706	100	(20(9				I_{γ} : from (⁶⁴ N1,p4n γ).
7413.8	$(47/0^{+})$	076.2.4	100	6296.8	$(12)^{(2+)}$	(\mathbf{E}^{2})	0.00101	$(K) = 0.001552, 22,, (L) = 0.000202, 2,, (M) = 4.12 \times 10^{-5}$
/646.9	(47/2*)	976.2 4	100	6670.7	(43/2)	(E2)	0.00181	$\begin{array}{l} \alpha(\text{K})=0.001553\ 22;\ \alpha(\text{L})=0.000202\ 3;\ \alpha(\text{M})=4.12\times10^{-5}\ 6\\ \alpha(\text{N})=8.69\times10^{-6}\ 13;\ \alpha(\text{O})=1.201\times10^{-6}\ 17;\ \alpha(\text{P})=5.75\times10^{-8}\ 8\\ \text{E}_{\gamma}: \text{ weighted average of }976.3\ 4\ \text{from }(^{64}\text{Ni},\text{p4n}\gamma) \text{ and }976.0\ 7\ \text{from }(^{28}\text{Si},\text{p4n}\gamma).\\ \text{Additional information }46. \end{array}$
7837.5	$(47/2^{-})$	1158.7 6	100	6678.8	$(43/2^{-})$			
8159.2	$(49/2^{-})$	806.7 6	32 11	7352.5	$(47/2^{-})$		1.01.10-3	at a contratu 15 at a constance 10 at a 5 a
		1178.0 6	100 21	6981.2	$(45/2^{-})$	(E2)	1.21×10^{-3}	$\alpha(K)=0.001044 \ 15; \ \alpha(L)=0.0001329 \ 19; \ \alpha(M)=2.71\times10^{-3} \ 4$

20

$\gamma(^{123}Cs)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{\dagger}	Comments
8559.2	(51/2 ⁻)	400.0 <i>6</i> 1206.7 <i>4</i>	3.4 <i>17</i> 100 <i>9</i>	8159.2 7352.5	(49/2 ⁻) (47/2 ⁻)	(E2)	1.16×10 ⁻³	$\begin{aligned} \alpha(\text{N}) &= 5.71 \times 10^{-6} \ 8; \ \alpha(\text{O}) &= 7.94 \times 10^{-7} \ 12; \ \alpha(\text{P}) &= 3.88 \times 10^{-8} \ 6; \\ \alpha(\text{IPF}) &= 4.12 \times 10^{-6} \ 8 \end{aligned}$ Additional information 47. $\begin{aligned} \text{E}_{\gamma}, \text{I}_{\gamma}: \ \text{from} \ (^{64}\text{Ni}, \text{p}4n\gamma) \ \text{only}. \\ \alpha(\text{K}) &= 0.000994 \ 14; \ \alpha(\text{L}) &= 0.0001262 \ 18; \ \alpha(\text{M}) &= 2.57 \times 10^{-5} \ 4 \\ \alpha(\text{N}) &= 5.43 \times 10^{-6} \ 8; \ \alpha(\text{O}) &= 7.54 \times 10^{-7} \ 11; \ \alpha(\text{P}) &= 3.69 \times 10^{-8} \ 6; \\ \alpha(\text{IPF}) &= 7.22 \times 10^{-6} \ 12 \end{aligned}$ $\begin{aligned} \text{B}(\text{E2})(\text{W.u.}) &= 59 + 27 - 11 \end{aligned}$
8699.9	(51/2+)	1053.0 6	100	7646.9	(47/2 ⁺)	(E2)	1.53×10 ⁻³	E _γ : weighted average of 1206.8 <i>4</i> from (⁶⁴ Ni,p4nγ) and 1206 <i>I</i> from (³⁴ S,3pγ). I _γ : from (⁶⁴ Ni,p4nγ). Additional information 48. $\alpha(K)=0.001320 \ I9; \ \alpha(L)=0.0001700 \ 24; \ \alpha(M)=3.47\times10^{-5} \ 5$ $\alpha(N)=7.31\times10^{-6} \ II; \ \alpha(O)=1.013\times10^{-6} \ I5; \ \alpha(P)=4.89\times10^{-8} \ 7$ E _γ : weighted average of 1052.9 <i>6</i> from (⁶⁴ Ni,p4nγ) and 1053.2 7 from (²⁸ Si,p4nγ). Additional information 49.
9435.8	(53/2 ⁻)	876.7 6 1276.6 6	43 <i>14</i> 100 <i>22</i>	8559.2 8159.2	(51/2 ⁻) (49/2 ⁻)	(E2)	1.04×10 ⁻³	α (K)=0.000887 <i>13</i> ; α (L)=0.0001120 <i>16</i> ; α (M)=2.28×10 ⁻⁵ <i>4</i> α (N)=4.81×10 ⁻⁶ <i>7</i> ; α (O)=6.70×10 ⁻⁷ <i>10</i> ; α (P)=3.29×10 ⁻⁸ <i>5</i> ; α (IPF)=1.76×10 ⁻⁵ <i>3</i> Additional information 50.
9862.3	(55/2 ⁻)	426.5 <i>6</i> 1303.1 <i>4</i>	4.9 25 100 <i>10</i>	9435.8 8559.2	(53/2 ⁻) (51/2 ⁻)	(E2)	1.01×10^{-3}	$\begin{split} & E_{\gamma}, I_{\gamma}: \text{ from } ({}^{64}\text{Ni}, p4n\gamma) \text{ only.} \\ & \alpha(\text{K}) = 0.000851 \ 12; \ \alpha(\text{L}) = 0.0001073 \ 15; \ \alpha(\text{M}) = 2.18 \times 10^{-5} \ 3 \\ & \alpha(\text{N}) = 4.61 \times 10^{-6} \ 7; \ \alpha(\text{O}) = 6.41 \times 10^{-7} \ 9; \ \alpha(\text{P}) = 3.16 \times 10^{-8} \ 5; \\ & \alpha(\text{IPF}) = 2.25 \times 10^{-5} \ 4 \end{split}$
9888.3	(55/2+)	1188.3 6	100	8699.9	(51/2+)	(E2)	1.19×10 ⁻³	E _γ : from (⁶⁴ Ni,p4nγ). Other: 1303 <i>I</i> from (³⁴ S,3pγ). Additional information 51. α (K)=0.001026 <i>I5</i> ; α (L)=0.0001304 <i>I9</i> ; α (M)=2.66×10 ⁻⁵ <i>4</i> α (N)=5.61×10 ⁻⁶ <i>8</i> ; α (O)=7.79×10 ⁻⁷ <i>I1</i> ; α (P)=3.81×10 ⁻⁸ <i>6</i> ; α (IPF)=5.12×10 ⁻⁶ <i>I0</i> E _γ : weighted average of 1188.3 <i>6</i> from (⁶⁴ Ni,p4nγ) and 1188.2 <i>7</i>
10772.8	(57/2 ⁻)	1337.0 6	100	9435.8	(53/2 ⁻)			from $(^{28}Si,p4n\gamma)$. Additional information 52.
11021.1	(59/2+)	1132.8 6	100	9888.3	(55/2+)	(E2)	1.31×10 ⁻³	$\alpha(K)=0.001132 \ I6; \ \alpha(L)=0.0001447 \ 21; \ \alpha(M)=2.95\times10^{-5} \ 5 \\ \alpha(N)=6.22\times10^{-6} \ 9; \ \alpha(O)=8.63\times10^{-7} \ I3; \ \alpha(P)=4.20\times10^{-8} \ 6; \\ \alpha(IPF)=1.25\times10^{-6} \ 3 \\ Additional integration \ 52 \\ Additional in$
11213.7	(59/2+)	1325.4 6	100	9888.3	(55/2+)	(E2)	0.000979 14	Additional information 53. α =0.000979 14; α (K)=0.000822 12; α (L)=0.0001035 15; α (M)=2.11×10 ⁻⁵ 3 α (N)=4.45×10 ⁻⁶ 7; α (O)=6.19×10 ⁻⁷ 9; α (P)=3.06×10 ⁻⁸ 5;

21

$\gamma(^{123}Cs)$ (continued)

E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{\dagger}	Comments
11233.5	(59/2 ⁻)	1371.3 6	100	9862.3	(55/2 ⁻)	(E2)	0.000928 13	α (IPF)=2.71×10 ⁻⁵ 4 Additional information 54. α =0.000928 13; α (K)=0.000769 11; α (L)=9.65×10 ⁻⁵ 14; α (M)=1.96×10 ⁻⁵ 3 α (N)=4.15×10 ⁻⁶ 6; α (O)=5.77×10 ⁻⁷ 9; α (P)=2.86×10 ⁻⁸ 4; α (IPF)=3.85×10 ⁻⁵ 6
11252.7	(59/2 ⁻)	1390.3 6	100	9862.3	(55/2 ⁻)	(E2)	0.000909 13	E _{γ} : weighted average of 1371.0 <i>6</i> from (⁶⁴ Ni,p4n γ) and 1372 <i>1</i> from (³⁴ S,3p γ). Additional information 55. α =0.000909 <i>13</i> ; α (K)=0.000748 <i>11</i> ; α (L)=9.38×10 ⁻⁵ <i>14</i> ; α (M)=1.91×10 ⁻⁵ <i>3</i> α (N)=4.03×10 ⁻⁶ <i>6</i> ; α (O)=5.61×10 ⁻⁷ <i>8</i> ; α (P)=2.78×10 ⁻⁸ <i>4</i> ;
11270.8? 11916.6	(59/2 ⁻) (61/2 ⁻)	498.0 <i>6</i> 663.9 <i>6</i>	100 100	10772.8 11252.7	(57/2 ⁻) (59/2 ⁻)	(M1+E2) (M1)	0.00606	α (IPF)=4.39×10 ⁻⁵ 7 Additional information 56. Additional information 57. α (K)=0.00523 8; α (L)=0.000661 10; α (M)=0.0001346 19 α (N)=2.85×10 ⁻⁵ 4; α (O)=3.99×10 ⁻⁶ 6; α (P)=2.01×10 ⁻⁷ 3 Additional information 58.
12293.2	(63/2 ⁻)	1022.3 ^{&} 6 1040.5 6 1059.8 6	71 <i>14</i> 100 <i>30</i>	11270.8? 11252.7 11233.5	(59/2 ⁻) (59/2 ⁻) (59/2 ⁻)	(E2)	1.51×10 ⁻³	α (K)=0.001302 <i>19</i> ; α (L)=0.0001676 <i>24</i> ; α (M)=3.42×10 ⁻⁵ <i>5</i> α (N)=7.21×10 ⁻⁶ <i>11</i> ; α (O)=9.99×10 ⁻⁷ <i>14</i> ; α (P)=4.83×10 ⁻⁸ <i>7</i> Additional information 59.
12431.0 12469.5	(63/2 ⁻) (63/2 ⁺)	1178.3 6 1448.4 6	100 100	11252.7 11021.1	(59/2 ⁻) (59/2 ⁺)	(E2)	0.000860 12	α =0.000860 <i>12</i> ; α (K)=0.000690 <i>10</i> ; α (L)=8.63×10 ⁻⁵ <i>13</i> ; α (M)=1.755×10 ⁻⁵ <i>25</i> α (N)=3.71×10 ⁻⁶ <i>6</i> ; α (O)=5.17×10 ⁻⁷ <i>8</i> ; α (P)=2.57×10 ⁻⁸ <i>4</i> ; α (IPE)=6.16×10 ⁻⁵ <i>9</i>
12609.6 13165.1	(63/2 ⁺) (67/2 ⁺)	1395.9 6 695.6 6	100 100	11213.7 12469.5	(59/2 ⁺) (63/2 ⁺)	(E2)	0.00397	$\alpha(\text{K})=0.00338 \ 5; \ \alpha(\text{L})=0.000464 \ 7; \ \alpha(\text{M})=9.52\times10^{-5} \ 14 \ \alpha(\text{N})=2.00\times10^{-5} \ 3; \ \alpha(\text{O})=2.73\times10^{-6} \ 4; \ \alpha(\text{P})=1.241\times10^{-7} \ 18 \ \text{Additional information 60.}$
13533.7	(67/2 ⁻)	1102.7 6 1240.5 6	50 <i>13</i> 100 <i>25</i>	12431.0 12293.2	(63/2 ⁻) (63/2 ⁻)	(E2)	1.10×10 ⁻³	α (K)=0.000940 <i>14</i> ; α (L)=0.0001190 <i>17</i> ; α (M)=2.42×10 ⁻⁵ <i>4</i> α (N)=5.12×10 ⁻⁶ <i>8</i> ; α (O)=7.11×10 ⁻⁷ <i>10</i> ; α (P)=3.49×10 ⁻⁸ <i>5</i> ; α (IPF)=1.184×10 ⁻⁵ <i>19</i>
13870.1	(71/2 ⁺)	705.0 6	100	13165.1	(67/2 ⁺)	(E2)	0.00384	Additional information 61. $\alpha(K)=0.00328 5; \alpha(L)=0.000448 7; \alpha(M)=9.19\times10^{-5} 13$ $\alpha(N)=1.93\times10^{-5} 3; \alpha(O)=2.64\times10^{-6} 4; \alpha(P)=1.202\times10^{-7} 17$ Additional information 62
14955.4	(71/2 ⁻)	1421.7 6	100	13533.7	(67/2 ⁻)	(E2)	0.000881 13	α =0.000881 <i>13</i> ; α (K)=0.000716 <i>10</i> ; α (L)=8.96×10 ⁻⁵ <i>13</i> ;

22

 $^{123}_{55}\mathrm{Cs}_{68}$ -22

γ (¹²³Cs) (continued)

 E_{γ}^{\ddagger} E_i (level)

Comments

 $\alpha(M)=1.82\times 10^{-5} 3$ $\alpha(N)=3.85\times10^{-6}$ 6; $\alpha(O)=5.37\times10^{-7}$ 8; $\alpha(P)=2.66\times10^{-8}$ 4; $\alpha(IPF)=5.32\times10^{-5}$ 8 Additional information 63.

[†] Additional information 64.

[±] For transitions from low-spin states (J<11/2), values are from ¹²³Ba ε decay (2000Gi12) with Mult. based on ce data; for those from high-spin states (J \ge 11/2), values are from $({}^{28}\text{Si}, p4n\gamma)$ (2005Si31) and/or $({}^{64}\text{Ni}, p4n\gamma)$ (2004Si27) with Mult. based on $\gamma\gamma$ (DCO) data and RUL where T_{1/2} data available or level scheme from band assignments (for latter, Mult. placed in parentheses since D or Q can only be deduced from DCO data), unless otherwise noted.

[#] Deduced by the evaluator from ce data in ¹²³Ba ε decay (2000Gi12) using the BrIccMixing code, unless otherwise noted.

[@] Multiply placed.

[&] Placement of transition in the level scheme is uncertain.

¹²³₅₅Cs₆₈

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Coincidence

¹²³₅₅Cs₆₈

¹²³₅₅Cs₆₈

 $^{123}_{55}\mathrm{Cs}_{68}\text{--}28$

 $^{123}_{55}\mathrm{Cs}_{68}\text{--}28$

From ENSDF

Adopted Levels, Gammas

¹²³₅₅Cs₆₈

¹²³₅₅Cs₆₈