¹²²In β^- decay (10.8 s) 1988Ra09,1979Fo10,1979Ch10

		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	T. Tamura	NDS 108, 455 (2007)	30-Sep-2006	

Parent: ¹²²In: E=2.9×10² 14; J^{π}=(8⁻); T_{1/2}=10.8 s 4; Q(β ⁻)=6370 50; % β ⁻ decay=100.0

1979Ch10: ²³⁸U(p,f), E(p) was not given (see 1977ChZO), on-line ms; ¹²⁴Sn(d, α), enriched target; semi γ , $\gamma\gamma$ -coin, $\gamma\gamma$ -delayed coin.

1979Fo10: ²³⁵U(n,f) E=th, on-line mass separation; on-line chem; semi γ , ce, $\gamma\gamma$ -coin, $\beta\gamma$ - and $\gamma\gamma$ -delayed coin.

Other: 1977ChZO (²³⁸U(p,f) E(p)=100 MeV).

The decay scheme is that proposed by 1988Ra09 on the basis of energy sums and $\gamma\gamma$ -coin by 1979Fo10 and 1979Ch10.

¹²²Sn Levels

E(level)	$J^{\pi^{\dagger}}$	T _{1/2} ‡	Comments
0.0	0+		
1140.56 5	2+		
2142.14 6	4+		
2245.89 6	5-	7.9 ns 9	$T_{1/2}$: From $\beta\gamma(t)$ measured using plastic and NaI(Tl) detectors (1979Fo10).
2409.14 11	7-	7.5 μs 9	$T_{1/2}$: weighted average of 7.2 μ s 10 (1979Ch10) and 9.3 μ s 23 (1979Fo10); measured from (1121 γ)(γ)(γ)(τ) (1979Fo10, 1979Ch10).
2653.08 9	6-		
2690.18 14	(8^{+})		
2838.19 15	6-		
3416.6 5	$(7^{-}, 8^{-}, 9^{-})$		
3530.82 11	$(7^{-}, 8^{-})$		
3703.50 15	$(7^{-}, 8^{-}, 9^{-})$		
3710.26 17	(7 ⁻ ,8 ⁻)		
[†] From Ad	lopted Levels.		

[‡] For measurement of excited states, see 10.3-s decay.

β^{-} radiations

E(decay)†	E(level)	$I\beta^{-\ddagger}$	Log ft	Comments
$(2.95 \times 10^3 \ 15)$	3710.26	5.5 8	5.61 12	av E β =1222 70
$(2.96 \times 10^3 \ 15)$	3703.50	9.5 18	5.37 13	av E β =1225 70
3.06×10 ³ 40	3530.82	77 3	4.57 10	av E β =1306 70
				E(decay): from $(\beta)(877\gamma, 1121\gamma)$ (1978A118).
$(3.24 \times 10^3 \ 15)$	3416.6	3.6 <i>3</i>	5.97 10	av E β =1359 70
$(3.82 \times 10^{3#} 15)$	2838.19	1.0 2	6.83 12	av Eβ=1631 71
$(3.97 \times 10^3 \ 15)$	2690.18	2.7 11	6.47 20	av E β =1701 71
$(4.01 \times 10^{3#} 15)$	2653.08	3.9 21	6.33 25	av Eβ=1719 71

[†] Values of log $ft \approx 6.3$, 6.8 for 2653 (6⁻), 2838 (6⁻) are not consistent with J^{π} change from parent state (8⁻). The apparent feeding (≈ 4 %) may indicate incompleteness of the decay scheme, probably caused from 2 reasons: 1) lack of exact knowledge of dividing the relevant γ 's among 10.3-s and 10.8-s isomers in the analysis of mixed source; 2) these 6⁻ levels possibly be fed by either undetected or unassigned γ 's from high-lying levels (Q β ⁻=6370 keV).

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

¹²²In β^- decay (10.8 s) 1988Ra09,1979Fo10,1979Ch10 (continued)

 $\gamma(^{122}\text{Sn})$

I γ normalization: Assumed no IT decay and no β^- branching to g.s.

E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^a	α ^C	Comments
103.74 <i>1</i>	81 ^{&} 6	2245.89	5-	2142.14	4+	E1	0.1639	α (K)=0.1418; α (L)=0.01792; α (M)=0.00345; α (N+)=0.00075 Mult.: from α (K)exp=0.13 <i>3</i> (1979Fo10).
163.48 20	66 ^{&} 5	2409.14	7-	2245.89	5-	E2	0.283	$\alpha(K)=0.2259; \alpha(L)=0.0457; \alpha(M)=0.00912; \alpha(N+)=0.00194$ Mult. from $\alpha(K)=0.0025, \alpha(N+)=0.00194$
243.8 3	7.0 10	2653.08	6-	2409.14	7-	[M1]	0.0495	$\alpha(K)=0.0429; \ \alpha(L)=0.00533; \ \alpha(M)=0.00104; \ \alpha(N+)=0.00023$
281.03 9	5.1 7	2690.18	(8 ⁺)	2409.14	7-	[E1]	0.0102	$\alpha(K) = 0.00885; \ \alpha(L) = 0.00107; \ \alpha(M) = 0.00021$
407.17 7	9.5 12	2653.08	6-	2245.89	5-	[M1]	0.01320	$\alpha(K) = 0.01145; \ \alpha(L) = 0.00141; \ \alpha(M) = 0.00027$
592.27 14	3.9 8	2838.19	6-	2245.89	5-			
692.4 4	2.9 8	3530.82	(7 ⁻ ,8 ⁻)	2838.19	6-			
840.4 [#] 3	1.2 7	3530.82	$(7^{-}.8^{-})$	2690.18	(8^{+})			
877.70 8	11.2 11	3530.82	(7 ⁻ ,8 ⁻)	2653.08	6-			
1001.58.3	98.4 <mark>&</mark> 14	2142.14	4+	1140.56	2+			
1007.5 4	3.6 3	3416.6	$(7^{-}, 8^{-}, 9^{-})$	2409.14	7-			
1013.4 [@] 3	1.3 [@] 3	3703.50	$(7^{-}.8^{-}.9^{-})$	2690.18	(8^{+})			
1057.2 4	1.9 6	3710.26	(7-,8-)	2653.08	6-			
1105.66 25	1.8 ^{&} 5	2245.89	5-	1140.56	2^{+}			
1121.68 <i>3</i>	61.2 23	3530.82	(7 ⁻ ,8 ⁻)	2409.14	7-			
1140.55 5	100 ^{&} 10	1140.56	2+	0.0	0^{+}	E2		
1294.34 [#] 10	7.1 10	3703.50	(7 ⁻ ,8 ⁻ ,9 ⁻)	2409.14	7-			
1301.11 14	3.6 5	3710.26	$(7^{-}, 8^{-})$	2409.14	7-			

[†] From 1988Ra09, unless noted otherwise.

[‡] From 1988Ra09, unless noted otherwise; the $\Delta I\gamma$'s are calculated from table of 1988Ra09 by multiplying a factor 7.75 to the $\Delta I\gamma$ for the mixed source data (10.3-s (83%) and 10.8-s (17%)), unless otherwise noted; see 1988Ra09 for the information on $I\gamma$ and $\Delta I\gamma$ for unplaced γ 's.

Average of 1979Fo10 and 1979Ch10; uncertainty covers approximate range of values from 1979Fo10 and 1979Ch10.

[@] From 1979Ch10; not seen by 1988Ra09.

[&] ΔI γ is subject to dividing error for 10.3-s and 10.8-s isomers.

^a From adopted gammas, unless noted otherwise.

^b For absolute intensity per 100 decays, multiply by 1.00 3.

^{*c*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹²²In β^- decay (10.8 s) 1988Ra09,1979Fo10,1979Ch10

3