¹⁰⁹Ag(¹⁶O,3nγ),⁹⁴Mo(³¹P,2pnγ) 2000Mo16,1998Sm07

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. Tamura	NDS 108, 455 (2007)	30-Sep-2006

Compiled by evaluator using $E\gamma'$ s, $I\gamma'$ s and DCO's from 2000Mo16, with $E\gamma'$ s from (24⁺), (26⁺), (28⁺) members for band 1, (25⁺), (27⁺) members for band 2 from 1998Sm07.

See also 107 Ag(19 F,p3n γ) and 112 Sn(12 C,pn γ).

1998Sm07: ⁹⁴Mo(³¹P,2pn γ) E(³¹P)=127 MeV; measured E γ , I γ and $\gamma\gamma$ -coin. But no numerical data are presented, except E γ (Δ E γ =1 keV) and band structures in Fig.1. Proposed band structures consisting of π =(+) band up to (28⁺), and π =- up to (21⁻) on the basis of B(M1)/B(E2) and comparison with band structures in ¹¹⁸I, ^{118,120,124,126}Cs, and ^{124,126,128}La.

2000Mo16: 109 Ag(16 O,3n γ) E=80 MeV, Array of Compton suppressed HP Ge and LEPS detectors; E γ , I γ and DCO ratios,

 $\gamma\gamma$ -coincidence; Deduced levels J^{π} , experimental Routhian surface calculations, cranking shell model calculations. Band 1 through band 6 are assigned.

Other in-beam γ spectroscopy: 1986Qu01: ¹⁰⁹Ag(¹⁸O,5n γ) E(¹⁸O)=96 MeV; semi γ , $\gamma\gamma$ -coin, $\gamma\gamma$ (t), excitation functions.

¹²²Cs Levels

E(level)	$J^{\pi #}$	Comments
0.0	1+	
140 ^{‡b} 30	8(-)	Additional information 1.
235.30 ^c 14	(9 ⁻)	
272.30 ^a 16	$(9^+)^{(0)}$	
323.5 ^{&} 4	$(10^+)^{@}$	
365.60 ^b 16	(10 ⁻)	
426.8 ^{<i>a</i>} 4	(11^{+})	
453.8 4	(10^{-})	
508.1 ^{<i>x</i>} 4	(12^{+})	
568.90° 21	(11 ⁻)	
787.60° 22	(12^{-})	
$814.3^{\circ} 4$ 891 5 ^e 4	(13^{+}) (11^{-})	
909.4 4	(11^{-})	
980.7 <mark>&</mark> 4	(14^+)	
1055.6 ^d 4	(13+)	
1072.5 ^c 3	(13 ⁻)	
1082.7 f 5	(12^{-})	
1358.2 ^e 4	(13 ⁻)	
1361.1 ^b 3	(14 ⁻)	
1373.2 ^{<i>a</i>} 4	(15^{+})	
1632.4 ^{<i>d</i>} 5	(15^{+})	
1640.0 ^{&} 4	(16^{+})	
1699.5 ^{<i>f</i>} 6	(14 ⁻)	
1707.3 [°] 4	(15^{-})	
1937.7° 6	(15 ⁻)	
2051.7° 4	(16^{-})	
2077.7° 5	(17)	
$2508.0^{-1}0$	$(1/^{-})$	
2398.0 ⁷ б 2444 1 ^С 4	(10) (17^{-})	
24771.1 7 2454.3 8 5	(17) (18^+)	
24J4.3 J	(10)	

109 Ag(16 O,3n γ), 94 Mo(31 P,2pn γ) 2000Mo16,1998Sm07 (continued)

E(level)	$J^{\pi \#}$	E(level)	$J^{\pi \#}$	E(level)	$J^{\pi \#}$	E(level)	$J^{\pi \#}$
2623.9 ^e 7	(17 ⁻)	3391.8 ^{&} 5	(20^{+})	4287.4 9	(21 ⁻)	5699? ^{†b} 4	(24 ⁻)
2836.6 ^b 5	(18 ⁻)	3407.1 ^e 8	(19 ⁻)	4426.6 <mark>&</mark> 6	(22^{+})	5965 ^{†a} 3	(25 ⁺)
2909.5 ^a 5	(19 ⁺)	3706.8 ^b 5	(20 ⁻)	4652.9 ^b 7	(22 ⁻)	6673 ^{†&} 5	(26+)
3194.1 5 9	(18 ⁻)	3849.2 ^a 6	(21+)	4874.5 ^a 6	(23+)	7105? ^{†a} 5	(27 ⁺)
3234.4 ^d 7	(19 ⁺)	4156.9 ^c 5	(21-)	5121.3 ^c 7	(23 ⁻)	7873? ^{†&} 5	(28+)
3263.1 ^c 5	(19 ⁻)	4279.8 ^e 9	(21^{-})	5532 ^{†&} 3	(24^{+})		

¹²²Cs Levels (continued)

[†] From 1998Sm07.

 ‡ Mass difference of the g.s. and this isomers.

[#] Based on the band structures built on $8^{(-)}$, (140 keV 30) state,

^(a) There have been made discrepant spin assignments for the the band 1 and band 2, namely, base level at 324 keV as (10^+) , and 272 keV as (9^+) by 2000Mo16 (1998Sm07,2005Ku34); while the 324 keV as (8^+) , and the 272 keV as (7^+) by 2005Uu01 (1996Li13). Both choices appear to fit smooth-energy spacing trend as discussed in 1998Sm07, 1996Li13 and 2005Uu01. Evaluator takes the assignments of 2000Mo16 (1998Sm07,2005Ku34).

[&] Band(A): band 1, $\pi h_{11/2} \otimes \nu h_{11/2}$, $\alpha = 0$.

^{*a*} Band(a): band 2, $\pi h_{11/2} \otimes \nu h_{11/2}$, $\alpha = 1$.

- ^{*b*} Band(B): band 3, $\pi h_{11/2} \otimes v d_{5/2}$, $\alpha = 0$.
- ^{*c*} Band(b): band 4, $\pi h_{11/2} \otimes \nu d_{5/2}$, $\alpha = 1$.
- ^d Band(C): band 5, Band based on (13^+) .
- ^e Band(D): band 6, Band based on (11⁻).
- ^f Band(E): band 7, Band based on (12⁻).

$\gamma(^{122}Cs)$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult.@	Comments
235.30 272.30	(9 ⁻) (9 ⁺)	95.3 2 37.0 2	71 4	140 235.30	8 ⁽⁻⁾ (9 ⁻)	D(+Q)	Mult.: DCO(f)=0.9 2. observed only in coincidence spectra with the 95 γ . L.: No value given.
		132.3 2	100	140	8(-)	E1	Mult.: DCO(d)=0.7 2; 2000Mo16 deduced E1 from angular distribution and linear polarization.
323.5	(10 ⁺)	51.2 4	7.9 11	272.30	(9+)	(D+Q)	Mult.: conversion coefficient deduced from intensity balance at 323.5 keV requires mult.=E2(+M1).
365.60	(10^{-})	130.3 2	30.3 15	235.30	(9 ⁻)	D(+Q)	Mult.: DCO(d)=0.6 2.
		225.6 2	1.8 <i>3</i>	140	8(-)	Q	Mult.: evaluator assumes the DCO value given as 2.3 by 2000Mo16 is DCO(d) value because 225.6γ is parallel with 132.3 E1 gating γ .
426.8	(11^{+})	103.3 2	87 4	323.5	(10^{+})	D(+Q)	Mult.: DCO(e)=0.7 2.
		154.5 <i>4</i>	2.9 4	272.30	(9^{+})	Q	Mult.: DCO(e)=2.0 8.
453.8	(10 ⁻)	218.5 4	4.4 7	235.30	(9-)	D	E_{γ} : doublet of 218.5 and 218.7. Mult.: DCO(g)=0.9 4.
508.1	(12^{+})	81.3 2	52 <i>3</i>	426.8	(11^{+})	D(+Q)	Mult.: DCO(e)=0.9 2.
		184.6 2	5.2 8	323.5	(10^{+})	Q	Mult.: DCO(e)=1.6 6.
568.90	(11^{-})	203.3 2	24.5 12	365.60	(10^{-})	D(+Q)	Mult.: DCO(f)=0.9 2.
		333.6 4	3.1 5	235.30	(9-)	Q	Mult.: DCO(g)=2.0 8.
787.60	(12 ⁻)	218.7 2	10.0 5	568.90	(11 ⁻)	D(+Q)	E_{γ} : doublet of 218.5 and 218.7. Mult.: DCO(f)=1.0 <i>3</i> .
		422.0 2	10.2 5	365.60	(10^{-})	Q	Mult.: DCO(f)=1.7 4.
814.3	(13+)	306.2 2	57 3	508.1	(12^{+})	D(+Q)	Mult.: DCO(e)=0.5 1.

Continued on next page (footnotes at end of table)

109 Ag(16 O,3n γ), 94 Mo(31 P,2pn γ) 2000Mo16,1998Sm07 (continued)

$\gamma(^{122}Cs)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.@	Comments
814.3	(13^{+})	387.5 4	6.0.9	426.8	(11^{+})	0	Mult.: $DCO(e) = 1.7.7$.
891.5	(11^{-})	525.9 4	3.96	365.60	(10^{-})	Ď	Mult.: $DCO(f) = 1.04$.
909.4	(11^{-})	455.6 4	4.3 6	453.8	(10^{-})	D	E_{α} : doublet of 455.2 and 455.6.
	()				()		Mult: $DCO(h)=0.4.2$
		543 8 4	416	365 60	(10^{-})	D	Mult $DCO(f) = 0.9.4$
980 7	(14^{+})	166 4 2	29 5 15	814.3	(13^+)	D(+0)	Mult : $DCO(e)=0.8.2$
200.7	(11)	472.6.2	73.4	508.1	(12^+)	0	Mult: $DCO(e) = 1.5.4$
1055.6	(13^{+})	547 5 2	1176	508.1	(12^+)	$\tilde{D}(+0)$	Mult: $DCO(e)=0.7.2$
1072.5	(13^{-})	284.9.2	10.2.5	787.60	(12^{-})	$D(\pm 0)$	Mult: $DCO(f) = 0.9.2$
1072.5	(15)	503.6.4	63 10	568.90	(12^{-})	D(1Q)	Mult: $DCO(f)=2.1.8$
1082.7	(12^{-})	513.8 4	163	568.90	(11^{-})	D	Mult: $DCO(f) = 0.6.3$
1358.2	(12^{-})	118.8 1	365	000.70	(11^{-})	0	Mult: $DCO(f) = 0.05$.
1556.2	(15)	466 7 <i>A</i>	5.0 5	909. 4 801.5	(11^{-})	Q	F : only presented in the level scheme, no by value given
1361.1	(14^{-})	288.6.4	500	1072.5	(11^{-})	$D(\pm 0)$	L_{γ} . only presented in the level scheme, no 1γ value given. Mult : DCO(f)=0.8.3
1501.1	(14)	573 5 2	1056	787.60	(13^{-})	$D(\pm Q)$	Mult.: $DCO(f) = 0.85$. Mult : $DCO(f) = 1.05$
1050.0	(15+)	373.52	10.50	707.00	(12)	Q	Mult DCO(1)=1.9 5.
1373.2	(15^{+})	392.5°° 3	35.0	980.7	(14^{+})	D(+Q)	E_{γ} : triplet of 392.4, 392.5 and 392.6.
					(12+)		Mult.: DCO(f)=0.6 3.
	(4 m ± 5	558.9 2	13.8 7	814.3	(13^{+})	Q	Mult.: $DCO(e) = 1.3 3$.
1632.4	(15^{+})	576.8 4	5.0 8	1055.6	(13^{+})	Q	Mult.: $DCO(e) = 1.6 6.$
		651.7 2	11.1 6	980.7	(14 ⁺)	D(+Q)	Mult.: $DCO(f)=0.8$ 3.
1640.0	(16^{+})	266.8 4	5.1 8	1373.2	(15^{+})	D(+Q)	Mult.: $DCO(e)=0.7 \ 3.$
		659.3 2	57.2 28	980.7	(14^{+})	Q	Mult.: $DCO(e) = 1.5 4$.
1699.5	(14^{-})	616.8 4	1.9 3	1082.7	(12^{-})	Q	Mult.: DCO(f)=3.0 12.
1707.3	(15^{-})	346.2 3	4.7 7	1361.1	(14^{-})	D(+Q)	Mult.: DCO(f)=0.8 3.
		634.8 <i>4</i>	7.6 10	1072.5	(13^{-})	Q	Mult.: $DCO(f)=2.2 \ 8.$
1937.7	(15^{-})	579.5 4	5.8 10	1358.2	(13^{-})	Q	Mult.: DCO(f)=1.8 7.
2051.7	(16 ⁻)	344.4 4	3.8 6	1707.3	(15^{-})	D(+Q)	Mult.: DCO(f)=0.8 3.
		690.6 4	8.1 12	1361.1	(14^{-})	Q	Mult.: DCO(f)=2.2 9.
2077.7	(17^{+})	437.7 2	14.2 7	1640.0	(16^{+})	D(+Q)	Mult.: DCO(e)=0.6 2.
		704.5 2	11.4 6	1373.2	(15^{+})	Q	Mult.: $DCO(e)=1.5$ 4.
2368.6	(17^{+})	736.2 4	4.7 8	1632.4	(15^{+})	Q	E_{γ} : doublet of 736.2 and 736.8.
							Mult.: DCO(e)=1.7 7.
2398.6	(16 ⁻)	699.1 <i>4</i>	2.7 4	1699.5	(14^{-})	Q	Mult.: DCO(f)=2.7 10.
2444.1	(17^{-})	392.4 <mark>&</mark> 2	35.0 <mark>&</mark> 18	2051.7	(16^{-})	D(+O)	E_{y} : triplet of 392.4, 392.5 and 392.6.
	. ,				. ,		Mult.: DCO(f)=0.7 2.
		736.8 4	9.8 15	1707.3	(15^{-})	0	E_{α} : doublet of 736.2 and 736.8.
					(-)		Mult.: $DCO(f) = 1.7.7$.
2454.3	(18^{+})	814.3 2	24.1 12	1640.0	(16^{+})	0	Mult.: $DCO(e) = 1.8 4$.
2623.9	(17^{-})	686.2 4	5.8 10	1937.7	(15^{-})	ò	Mult.: DCO(f)=1.8 7.
2836.6	(18^{-})	307 5 & 1	35 0 &	2444-1	(17^{-})	$D(\pm 0)$	E : triplet of 302 4, 302 5 and 302 6
2850.0	(10)	592.5 4	55.0	2444.1	(17)	$D(\mp Q)$	E_{γ} . Inplet of 392.4, 392.5 and 392.0. Mult : DCO(e)=0.7.2
		784 0 4	6310	2051.7	(16^{-})	0	Mult.: $DCO(f) = 0.72$. Mult : $DCO(f) = 2.20$
2000 5	(10^{+})	155 2 1	4.8.7	2051.7	(10^{-})	Q	F : doublet of 455.2 and 455.6
2909.5	(1))	455.2 4	H. 0 /	2434.3	(10)	$D(\mp Q)$	E_{γ} . doublet of $+55.2$ and $+55.0$. Mult : DCO(a)=0.5.2
		021 0 1	6010	2077 7	(17^{+})	0	Mult.: $DCO(c) = 0.5 2$. Mult.: $DCO(c) = 2.8 / 12$
2104.1	(10^{-})	031.04 705.54	0.910	2077.7	(17) (16^{-})	Q	Mult $DCO(e) = 2.8 T2.$
2724.1	(10^+)	795.54 965 9 <i>1</i>	172	2398.0	(10)	0	Mult: $DCO(a) = 1.6.6$
3234.4 3263 1	(19)	005.04 126.5 1	1.73	2300.0 2836.6	(17)		Mult: DCO(t)=1.00.
5205.1	(17)	+20.3 4 810 0 2	5010	2030.0	(10)	D(TQ)	Mult \cdot DCO(1)=0.7 J.
3301 9	(20^{+})	019.03	5.9 IU 10 5 5	2444.1 2454 2	(17)	Q O	Mult: $DCO(1)=1.77$.
2407 1	(20^{-})	701.04	10.5 5	2434.3	(10^{-})	Q O	Mult: $DCO(c) = 2.0 0.$
2706 P	(19)	105.24	4.00 251	2023.9	(1/)	Q	WINIT. $DCO(1)=1.7/7.$
5700.8	(20)	443.12	2.34 199	3203.1 2024 4	(19)	0	Mult \cdot DCO(f) = 1.6.7
2840.2	(21+)	010.24	4.00	2001.0	(10)	V D(LO)	Mult. DCO(1)=1.0 /.
3849.2	(21)	43/.4 4	1.3 2	2000 5	(20°)	D(+Q)	Mult. $DCO(e)=0.0.5$.
		939.14	J.0 9	2909.3	(19')	Q	Mult.: $DCO(e)=1.9$ 8.

Continued on next page (footnotes at end of table)

			109 Ag(16 O,3n γ), 94 Mo(31 P,2pn γ) 2000Mo16,1998Sm07 (continued)							
γ ⁽¹²² Cs) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. [@]	Comments			
4156.9	(21^{-})	893.8 2	2.5 4	3263.1	(19 ⁻)	Q	Mult.: DCO(f)=2.0 8.			
4279.8	(21^{-})	872.7 4	0.8 2	3407.1	(19 ⁻)	Q	Mult.: DCO(h)=0.9 5.			
4287.4	(21^{-})	880.3 4	0.6 1	3407.1	(19 ⁻)	Q	Mult.: DCO(h)=0.8 5.			
4426.6	(22^{+})	1034.8 4	2.2 4	3391.8	(20^{+})	Q	Mult.: DCO(e)=1.7 9.			
4652.9	(22^{-})	946.1 <i>4</i>	1.6 3	3706.8	(20^{-})	Q	Mult.: DCO(f)=1.8 8.			
4874.5	(23^{+})	447.9 <i>4</i>	1.0 2	4426.6	(22^{+})					
		1025.3 4	0.6 2	3849.2	(21^{+})	Q	Mult.: $DCO(e)=1.5 6$.			
5121.3	(23^{-})	964.4 <i>4</i>	1.2 2	4156.9	(21^{-})	Q	Mult.: $DCO(f)=1.3 5$.			
5532	(24^{+})	1105 [‡] 3		4426.6	(22^{+})		Possibly corresponds to $E\gamma = 1102$ keV in (¹⁹ F,p3n γ).			
5699?	(24 ⁻)	1047 ^{‡a} 3		4652.9	(22 ⁻)					
5965	(25^+)	1090 [‡] 3		4874.5	(23^{+})		Possibly corresponds to $E\gamma=1088$ keV in (¹⁹ F,p3n γ).			
6673	(26^{+})	1141 [‡] 3		5532	(24^{+})		Possibly corresponds to $E\gamma=1139$ keV in (¹⁹ F,p3n γ).			
7105?	(27^{+})	1140 ^{‡a} 3		5965	(25^{+})					
7873?	(28^{+})	1200 ^{‡a} 3		6673	(26^{+})					

[†] From 2000Mo16, unless noted otherwise.

[‡] From 1998Sm07; no I γ value given by authors; the E γ are about 2 keV higher systematically than those of 2000Mo16.

[#] From 2000Mo16. Relative to $I(132\gamma)=100$.

^(a) From DCO ratio (2000Mo16) as given in the comment for each γ . DCO ratio $I\gamma(0^{\circ})/I\gamma(117^{\circ})$ data are obtained for the following coincidence conditions: DCO(d): from the total γ - γ asymmetric (0° by 117°) matrix; DCO(e): from the gate on 132.3 E1 transition. Note that DCO ratio of the 132.3 transition from the total γ - γ asymmetric matrix is 0.73; DCO(f): from the gate on 130.3 D(+Q) transition. Note that DCO ratio of the 130.3 transition from the total γ - γ asymmetric matrix is 0.59; DCO(g): from the gate on 95.3 D(+Q) transition DCO(h): from the gate on 579.5 Q transition. When both the gating and observing transitions are stretched and the same mult., DCO ratio, R \approx 1, if gating transition is stretched D transition and observing D+Q transition, R ranges between 0.5 and 2.5 depending on δ .

& Multiply placed with undivided intensity.

^a Placement of transition in the level scheme is uncertain.

55 - 0

¹⁰⁹Ag(¹⁶O,3nγ),⁹⁴Mo(³¹P,2pnγ) 2000Mo16,1998Sm07

Level Scheme (continued)

Intensities: relative $I(\gamma)$ & Multiply placed: undivided intensity given

¹²²₅₅Cs₆₇

$\frac{{}^{109}\text{Ag}({}^{16}\text{O},\!3n\gamma),\!{}^{94}\text{Mo}({}^{31}\text{P},\!2pn\gamma)}{2000\text{Mo16},\!1998\text{Sm07}}$

Level Scheme (continued)

¹²²₅₅Cs₆₇

¹²²₅₅Cs₆₇

