¹²¹Cs ε decay (155 s) **1991Ge02**

_		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Ohya	NDS 111, 1619 (2010)	20-Jan-2009

Parent: ¹²¹Cs: E=0; $J^{\pi}=3/2^{(+)}$; $T_{1/2}=155$ s 4; $Q(\varepsilon)=5372$ 18; $\%\varepsilon+\%\beta^+$ decay=100.0

1991Ge02: La(p,spall) E=600 MeV, on-line ms; measured γ , $\gamma\gamma$, $\gamma\gamma(t)$. La(³He,spall) E=280 MeV on-line ms; measured ce with

Si detector with magnetic β^+ shield, β^+ with $4\pi\beta$ plastic scin. Authors proposed level scheme in the mixed decays of ¹²¹Cs (155 s) and ¹²¹Cs (122 s) and also showed selected levels in the decay of ¹²¹Cs (122 s).

1981So06: ¹²⁴Xe(p,4n) E=52 MeV, $E\gamma$, $I\gamma$, $\gamma\gamma$, $E\beta^+$, $I\beta^+$, x/γ ratio, deduced decay scheme.

1984PaZZ: measured Q(β^+)=5.21 MeV 22 from shape-fitting procedure (a different method from F-K analysis).

1975We23: La(p,3pxn) E=600 MeV ms; measured γ in coincidence with β^+ .

Decay scheme is from evaluator based on that in 1991Ge02. Evaluator assumed no direct $\varepsilon + \beta^+$ feeding from ¹²¹Cs ε decay (155 s) to the levels at 179.44 keV and 196.081 keV which are strongly fed from ¹²¹Cs 9/2⁽⁺⁾ state, and also assumed no direct $\varepsilon + \beta^+$ feeding from ¹²¹Cs ε decay (122 s) to the levels at 153.95 keV, 239.74 keV, 264.5 keV, 427.12 keV and 449.85 keV which are strongly fed from ¹²¹Cs 3/2⁽⁺⁾ state. See ¹²¹Cs ε decay (122 s). The decay scheme of ¹²¹Cs g.s. $\varepsilon + \beta^+$ decay is still tentative due to similarity of half-lives of g.s. and the isomeric state.

¹²¹Xe Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	E(level) [†]
0 153.96 <i>11</i> 179 44 <i>13</i>	$5/2^{(+)}$ (1/2 ⁺) 7/2 ⁽⁺⁾	40.1 min 20 80 ns 15	553.03 <i>16</i> 619.91 <i>16</i> 661.06 <i>1</i> 5
196.08 <i>16</i> 239.77 <i>13</i> 355.77 <i>15</i>	$7/2^{(-)}$ (3/2 ⁺) (5/2 ⁻)	8 ns 2	682.41 <i>18</i> 696.50 <i>14</i> 737.44 <i>21</i>
427.12 <i>17</i> 449.84 <i>12</i> 497.2 <i>5</i>	$(3/2^+, 5/2^+)$ $(5/2^+)$		946.2 <i>4</i> 1117.6 <i>4</i>

[†] E(levels) are based on a least-squares fit to E(γ 's).

[‡] From Adopted Levels.

[#] From $\gamma\gamma$ (t).

 ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(4254 18)	1117.6	0.5 3	0.1 1	7.0 4	0.6 4	av E β =1467.5 85; ε K=0.1756 24; ε L=0.0233 4; ε M+=0.00633
(4426 18)	946.2	0.19 12	0.04 3	7.5 4	0.23 15	av Eβ=1547.8 85; εK=0.1551 21; εL=0.0206 3; εM+=0.00559 8
(4635 18)	737.44	1.1 6	0.20 11	6.8 <i>3</i>	1.3 7	av Eβ=1645.8 85; εK=0.1339 17; εL=0.01776 23; εM+=0.00482 6
(4676 18)	696.50	1.6 8	0.29 14	6.7 3	1.9 9	av Eβ=1665.1 85; εK=0.1302 17; εL=0.01727 22; εM+=0.00469 6
(4690 18)	682.41	0.9 5	0.17 9	6.9 <i>3</i>	1.1 6	av Eβ=1671.7 85; εK=0.1289 16; εL=0.01710 22; εM+=0.00464 6
(4711 18)	661.06	2.2 10	0.39 18	6.5 3	2.6 12	av Eβ=1681.7 85; εK=0.1270 16; εL=0.01685 21; εM+=0.00457 6
(4752 18)	619.91	1.5 8	0.26 13	6.7 3	1.8 9	av Eβ=1701.1 85; εK=0.1235 16; εL=0.01638 21; εM+=0.00445 6
(4819 <i>18</i>)	553.03	0.3 3	0.06 6	7.4 5	0.4 4	av Eβ=1732.7 85; εK=0.1181 15; εL=0.01565 20; εM+=0.00425 6

Continued on next page (footnotes at end of table)

¹²¹Cs ε decay (155 s) **1991Ge02** (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ι <i>β</i> + †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon\!+\!\beta^+)^\dagger$	Comments
(4875 18)	497.2	0.26 13	0.040 20	7.6 3	0.30 15	av $E\beta$ =1759.0 85; ε K=0.1137 14; ε L=0.01508 19; ε M+=0.00409.5
(4922 18)	449.84	3.8 17	0.6 3	6.4 3	4.4 20	av $E\beta$ =1781.4 85; ε K=0.1102 14; ε L=0.01461 18; ε M+=0.00396 5
(4945 18)	427.12	3.3 16	0.48 23	6.5 <i>3</i>	3.8 18	av $E\beta$ =1792.1 85; ε K=0.1086 13; ε L=0.01439 18; ε M+=0.00391 5
(5016 18)	355.77	3.5 17	0.48 23	6.5 <i>3</i>	4.0 19	av $E\beta$ =1825.8 86; ε K=0.1036 13; ε L=0.01374 17; ε M+=0.00373 5
(5132 18)	239.77	94	1.1 6	6.2 3	10 5	av $E\beta$ =1880.7 86; ε K=0.0962 12; ε L=0.01275 15; ε M+-0.00346 4
(5218 18)	153.96	12 5	1.4 6	6.1 <i>3</i>	13 6	av $E\beta$ =1921.4 86; ε K=0.0911 11; ε L=0.01207 14; ε M = -0.00328 4
(5372 18)	0	49 22	5.2 23	5.5 3	54 24	av $E\beta$ =1994.4 86; ε K=0.0828 10; ε L=0.01097 13; ε M+=0.00298 4

 † For absolute intensity per 100 decays, multiply by 1.00 45.

$\gamma(^{121}\text{Xe})$

I γ normalization: from $\Sigma I(\gamma + ce)$ to g.s. + $I(\varepsilon + \beta^+ \text{ to g.s.}) = 100$. $I(\varepsilon + \beta^+ \text{ to g.s.}) = 54\%$ 24 measured value from γ^{\pm} , $I(\beta^+)$ (1991Ge02).

Unplaced γ 's are not assigned to g.s. or isomeric state.

Eγ	$I_{\gamma}^{\ddagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\dagger}	Comments
x59.3 5	4 1							
85.9 <i>3</i>	62 4	239.77	(3/2 ⁺)	153.96	(1/2 ⁺)	M1	1.267 22	$\alpha(K)=1.087 \ 19; \ \alpha(L)=0.1438 \ 25; \ \alpha(M)=0.0292 \ 5; \ \alpha(N+)=0.00680 \ 12 \ \alpha(N)=0.00605 \ 11; \ \alpha(O)=0.000754 \ 13 \ Mult : from \ \alpha(K) and \ 12 \ 2.2 \ K/l = 7 \ l$
108.0 2	20 3	661.06		553.03		M1	0.660	$\begin{array}{l} \alpha(K) = 0.566 \; 9; \; \alpha(L) = 0.0747 \; 12; \; \alpha(M) = 0.01517 \\ 23; \; \alpha(N+.) = 0.00353 \; 6 \\ \alpha(N) = 0.00314 \; 5; \; \alpha(O) = 0.000392 \; 6 \\ \\ \text{Mult: from } \alpha(K) = 0.4 \; L \; K/L = 12 \; 6 \end{array}$
153.9 2	455 15	153.96	(1/2 ⁺)	0	5/2 ⁽⁺⁾	E2	0.397	$\alpha(K)=0.301 5; \alpha(L)=0.0766 12; \alpha(M)=0.01615$ $25; \alpha(N+)=0.00357 6$ $\alpha(N)=0.00323 5; \alpha(O)=0.000344 6$ Mult.: from K/L=3.9 4. $\alpha(K)(E2)=0.303$ is used as normalization
159.7 2	50 <i>3</i>	355.77	(5/2 ⁻)	196.08	7/2 ⁽⁻⁾	M1	0.221	$\alpha(K)=0.1903; \alpha(L)=0.02494; \alpha(M)=0.005058; \alpha(N+)=0.00117517 \alpha(N)=0.00104415; \alpha(O)=0.000130519$ Mult.: from $\alpha(K)=0.2022, K/L\approx 8.$
179.4 2	81 8	179.44	7/2 ⁽⁺⁾	0	5/2 ⁽⁺⁾	M1	0.1606	$\alpha(K)=0.1381\ 20;\ \alpha(L)=0.0180\ 3;\ \alpha(M)=0.00366$ $6;\ \alpha(N+)=0.000852\ 13$ $\alpha(N)=0.000757\ 11;\ \alpha(O)=9.47\times10^{-5}\ 14$ Mult.: from $\alpha(K)$ exp=0.15 2, K/L=7.4 4.
196.0 2	74 7	196.08	7/2 ⁽⁻⁾	0	5/2 ⁽⁺⁾	E1	0.0325	$\alpha(K)=0.0281$ 4; $\alpha(L)=0.00358$ 6; $\alpha(M)=0.000723$ 11; $\alpha(N+)=0.0001662$ 24 $\alpha(N)=0.0001482$ 22; $\alpha(O)=1.80\times10^{-5}$ 3 From $\alpha(K)$ exp=0.030 3, K/L=8.2 9.
210.1 2	22 2	449.84	$(5/2^+)$	239.77	$(3/2^+)$	[E2]	0.1360	$\alpha(K)=0.1082$ 16; $\alpha(L)=0.0221$ 4; $\alpha(M)=0.00462$

Continued on next page (footnotes at end of table)

¹²¹Cs ε decay (155 s) 1991Ge02 (continued)

$\gamma(^{121}$ Xe) (continued)

Eγ	$I_{\gamma}^{\ddagger \#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.	α^{\dagger}	Comments
239.6 2	232 14	239.77	(3/2+)	0	5/2 ⁽⁺⁾	M1	0.0736	7; $\alpha(N+)=0.001032$ 15 $\alpha(N)=0.000929$ 14; $\alpha(O)=0.0001028$ 15 Mult.: assumed E2 to deduce α . $\alpha(K)=0.0634$ 9; $\alpha(L)=0.00820$ 12; $\alpha(M)=0.001664$ 24; $\alpha(N+)=0.000388$ 6 $\alpha(N)=0.000344$ 5; $\alpha(O)=4.31\times10^{-5}$ 7 Mult.: from $\alpha(K)\exp=0.075$ 15,
270.2 2	50 4	449.84	(5/2+)	179.44	7/2 ⁽⁺⁾	M1	0.0536	K/L=7.5 8. $\alpha(K)=0.0461$ 7; $\alpha(L)=0.00595$ 9; $\alpha(M)=0.001206$ 17; $\alpha(N+)=0.000281$ 4 $\alpha(N)=0.000250$ 4; $\alpha(O)=3.13\times10^{-5}$ 5
272 2 2	5 1	427 12	$(2/2^+ 5/2^+)$	152.06	$(1/2^{+})$			Mult.: from α (K)exp=0.06 2, K/L=9.
295.8 2	43 3	449.84	$(5/2^+, 5/2^-)$ $(5/2^+)$	153.96	$(1/2^{+})$ $(1/2^{+})$	(E2)	0.0438	$\alpha(K)=0.0360 5; \alpha(L)=0.00619 9;$ $\alpha(M)=0.001282 19;$ $\alpha(N+)=0.000290 5$ (2) $\alpha(N+)=0.000290 5$
								α (N)=0.000260 4; α (O)=2.98×10 5 S Mult.: from α (K)exp=0.04 1, K/L=5 1.
326.8 2 x337 2 3	11 <i>3</i> 7 3	682.41		355.77	(5/2 ⁻)			
343.2 4	92	497.2		153.96	$(1/2^+)$			
355.9 2	70 4	355.77	(5/2 ⁻)	0	5/2(+)	E1	0.00672 10	$\alpha = 0.00672 \ 10; \ \alpha(K) = 0.00581 \ 9; \alpha(L) = 0.000726 \ 11; \ \alpha(M) = 0.0001464 21; \ \alpha(N+) = 3.39 \times 10^{-5} \ 5 \alpha(N) = 3.02 \times 10^{-5} \ 5; \ \alpha(O) = 3.72 \times 10^{-6} \ 6$
x361 7 3	6.2							Mult.: from α (K)exp=0.007 3.
373.8 3	11 2	553.03		179.44	7/2 ⁽⁺⁾			
380.1 <i>3</i> 393.2 <i>3</i>	8 2 7 <i>3</i>	619.91 946.2		239.77 553.03	(3/2+)			This γ is placed from 657.6 level in ¹²¹ Cs $\varepsilon + \beta^+$ decay (122 s).
398.8 <i>3</i>	14 2	553.03	(2 + 5)(2 + 5)	153.96	$(1/2^+)$		0.0152.12	
427.12	109 /	427.12	(3/2',5/2')	0	5/2(1)	(M1,E2)	0.0153 13	$\alpha(K)=0.0130\ 12;\ \alpha(L)=0.00180\ 3;\alpha(M)=0.000367\ 6;\alpha(N+)=8.47\times10^{-5}\ 14\alpha(N)=7.55\times10^{-5}\ 12;\ \alpha(O)=9.2\times10^{-6}\ 4$ Mult.: (M1,E2)+E0? from \alpha(K)exp=0.023\ 4,\ K/L=6\ 2.
^x 445.4 3 450.1 2	4 <i>I</i> 10 3	449.84	$(5/2^+)$	0	5/2(+)			This γ is placed from 449.85 and
130.12	10.5	117.01	(3/2)	Ū	5/2			646.1 levels in ¹²¹ Cs $\varepsilon + \beta^+$ decay (122 s).
456.6 [@] 3	21 [@] 3	696.50		239.77	$(3/2^+)$			
456.6 ^{^w 5}	10 ⁶ 4	1117.6		661.06	$(1/2^{+})$			
481.6 3	12 3 20 4	661.06		179.44	(1/2) $7/2^{(+)}$			
486.1 3	15 6	682.41		196.08	7/2(-)			
497.6 2 542.6 2	29 5 18 3	737.44		239.77	$(3/2^+)$			
542.0 Z	10 5 36 5	553.03		155.90	$(1/2^+)$ $5/2^{(+)}$			
558.3 4	10 6	737.44		179.44	$7/2^{(+)}$			
564.5 <i>5</i>	8 <i>3</i>	1117.6		553.03				

Continued on next page (footnotes at end of table)

						<u> </u>	(¹²¹ Xe)	(continued)
Eγ	Ι _γ ‡#	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Eγ	Ι _γ ‡#	E _i (level)
619.9 2 ^x 646.8 3	34 5 12 <i>3</i>	619.91		0	5/2 ⁽⁺⁾	^x 936.6 <i>3</i> ^x 949.2 <i>3</i>	12 2 8 3	
661.1 2 ^x 674.8 2	35 <i>4</i> 7 2	661.06		0	5/2 ⁽⁺⁾	^x 986.3 4 ^x 1060.3 4	63 83	
682.3 <i>3</i> <i>x</i> 690.5 <i>2</i>	73 84	682.41		0	5/2 ⁽⁺⁾	^x 1076.7 4 ^x 1115.0 8	83 74	
696.5 2 x797.9 4	18 <i>4</i> 8 2	696.50		0	5/2 ⁽⁺⁾	^x 1140.3 4 ^x 1179.8 5	30 <i>5</i> 5 <i>2</i>	
^x 841.9 7 ^x 850.5 3	72 103					^x 1255.2 5 ^x 1276.4 6	63 103	
^x 867.2 4 ^x 881.2 3	62 52					^x 1396.2 5 ^x 1416.5 5	73 103	
^x 891.6 3 ^x 900.2 3	72 82					^x 1432.7 5 ^x 1458.0 6	40 6 8 3	
^x 905.4 <i>4</i> ^x 914.3 <i>3</i> ^x 922.6 <i>3</i>	4 2 10 2 7 4					^x 1497.76 ^x 1511.16	83 83	

[†] Normalized to $\alpha(K)\exp=0.303$ for 153.9 γ (E2 theory). [‡] Evaluator has removed the contribution from ¹²¹Cs ε decay (122 s). Evaluator assumed no direct $\varepsilon+\beta^+$ feeding from ¹²¹Cs ε decay (155 s) to the levels at 179.44 keV and 196.081 keV which are strongly fed from ¹²¹Cs 9/2⁽⁺⁾ state, and also assumed no direct $\varepsilon + \beta^+$ feeding from ¹²¹Cs ε decay (122 s) to the levels at 153.95 keV, 239.74 keV, 264.5 keV, 427.12 keV and 449.85 keV which are strongly fed from ¹²¹Cs $3/2^{(+)}$ state. See ¹²¹Cs ε decay (122 s). # For absolute intensity per 100 decays, multiply by 0.033 15.

[@] Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

¹²¹Cs ε decay (155 s) 1991Ge02

Decay Scheme

¹²¹₅₄Xe₆₇

5