¹²¹Cs ε decay (122 s) **1991Ge02**

		History			
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	S. Ohya	NDS 111, 1619 (2010)	20-Jan-2009		

Parent: ¹²¹Cs: E=68.5 3; $J^{\pi}=9/2^{(+)}$; $T_{1/2}=122$ s 3; $Q(\varepsilon)=5372$ 18; $\%\varepsilon+\%\beta^+$ decay=83.0

1991Ge02: La(p,spall) E=600 MeV, on-line ms; measured γ , $\gamma\gamma$, $\gamma\gamma$ (t). La(³He,spall) E=280 MeV on-line ms; measured ce with Si detector with magnetic β^+ shield, β^+ with $4\pi\beta$ plastic scin. Authors proposed level scheme in the mixed decays of ¹²¹Cs (155 s) and ¹²¹Cs (122 s).

1981So06: ¹²⁴Xe(p,4n) E=52 MeV, $E\gamma$, $I\gamma$, $\gamma\gamma$, $E\beta^+$, $I\beta^+$, x/γ ratio, deduced decay scheme.

1984PaZZ: measured Q(β^+)=5.21 MeV 22 from shape-fitting procedure (a different method from F-K analysis).

1975We23: La(p,3pxn) E=600 MeV ms; measured γ in coincidence with β^+ .

1996Os04:measured Q+ $_{-}$ =5.40 MeV 4 with pure Ge detectors.

Decay scheme is from evaluator based on that in 1991Ge02. (155 s). Evaluator assumed no direct $\varepsilon + \beta^+$ feeding from ¹²¹Cs ε

decay (122 s) to the levels at 153.95 keV, 239.74 keV, 264.5 keV, 427.12 keV and 449.85 keV which are strongly fed from ¹²¹Cs $3/2^{(+)}$, and also assumed no direct $\varepsilon + \beta^+$ feeding to the levels at 179.44 keV and 196.081 keV which are strongly fed from ¹²¹Cs $9/2^{(+)}$ state. See ¹²¹Cs ε decay (155 s). The decay scheme of ¹²¹Cs ε decay (122 s) is still tentative due to similarity of half-lives of g.s.(155 s) and isomeric state (122 s).

¹²¹Xe Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	$5/2^{(+)}$	40.1 min 20	
153.95 14	$(1/2^+)$	80 ns 15	$T_{1/2}$: from $\gamma\gamma(t)$.
179.48 10	7/2(+)		
196.01 17	$7/2^{(-)}$	8 ns 2	$T_{1/2}$: from $\gamma\gamma(t)$.
234 52 24	$7/2^{(-)} 9/2^{(-)}$	0 110 2	$1/2$, nom $\gamma\gamma(0)$.
239 74 14	$(3/2^+)$		
264.5 5	$(11/2^{-})$		
414.17 11	$(9/2^+)$		
427.12 13	$(3/2^+, 5/2^+)$		
449.85 11	$(5/2^+)$		
459.50 16	$(7/2^+)$		
476.1 <i>3</i>			
476.16 24	$(7/2, 9/2, 11/2)^{(-)}$		
560.83 18	$(7/2^+)$		
592.6 4			
608.3 4			
646.1 <i>3</i>			
657.6 5	$(13/2^{-})$		
661.0 4			
00/./ 3 670 20 20	$(11/2^{+})$		
706 13 12	(11/2) $(7/2^+)$		
734 52 19	$(7/2^+ 0/2^+)$		
861.0.3	(1/2, 1/2)		
881.15 23			
897.1 4			
899.93 <i>23</i>			
910.23 18			
978.4 <i>4</i>			
998.72 17			
1020.8 11	$(11/2^+)$		
1149.4 4			
1247.1 6			
1261.5 4			

¹²¹Cs ε decay (122 s) 1991Ge02 (continued)

¹²¹Xe Levels (continued)

E(level)[†] 1299.56 *16* 1343.5 *3* 1419.7 *3* 1596.3 *5*

 † E(levels) are based on a least-squares fit to E($\gamma's).$

[‡] From Adopted Levels.

ε, β^+ radiations

I β normalization: from Ice((68.5 γ)/(I(IT)+I(ε + β ⁺)) \approx 0.17 (1991Ge02).

E(decay)	E(level)	$\mathrm{I}\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon\!+\!\beta^+)^\dagger$	Comments
(3844 18)	1596.3	0.17 8	0.06 3	7.04 21	0.23 11	av Eβ=1276.4 84; εK=0.239 4; εL=0.0318 5; εM+=0.00864 13
(4021 18)	1419.7	0.33 8	0.11 2	6.86 10	0.44 10	av E β =1358.5 84; ε K=0.209 3; ε L=0.0278 4; ε M+=0.00754 11
(4097 18)	1343.5	0.44 10	0.13 3	6.79 10	0.57 13	av E β =1394.0 84; ε K=0.197 3; ε L=0.0262 4; ε M+=0.00712 10
(4141 18)	1299.56	1.68 16	0.48 5	6.23 5	2.16 20	av E β =1414.5 84; ε K=0.191 3; ε L=0.0254 4; ε M+=0.00689 10
(4179 18)	1261.5	0.45 6	0.12 2	6.83 7	0.57 8	av E β =1432.3 84; ε K=0.186 3; ε L=0.0247 4; ε M+=0.00670 9
(4193 18)	1247.1	0.16 6	0.045 17	7.27 17	0.21 8	av $E\beta$ =1439.0 85; ε K=0.1837 25; ε L=0.0244 4; ε M+=0.00662 9
(4291 18)	1149.4	0.71 17	0.18 4	6.70 11	0.89 21	av $E_{\theta}=1484.7 85$; $\varepsilon K=0.1710 23$; $\varepsilon L=0.0227 3$; $\varepsilon M+=0.00616 9$
(4420 18)	1020.8	0.32 11	0.071 24	7.12 15	0.39 <i>13</i>	av $E\beta$ =1544.9 85; ε K=0.1558 21; ε L=0.0207 3; ε M+=0.00561 8
(4442 18)	998.72	0.94 11	0.206 24	6.66 6	1.15 <i>13</i>	av Eβ=1555.2 85; εK=0.1533 20; εL=0.0204 3; εM+=0.00552 8
(4462 18)	978.4	0.21 5	0.046 11	7.32 11	0.26 6	av E β =1564.8 85; ε K=0.1511 20; ε L=0.0201 3; ε M+=0.00544 7
(4530 18)	910.23	0.67 10	0.14 2	6.86 7	0.81 12	av E β =1596.8 85; ε K=0.1440 19; ε L=0.01911 25; ε M+=0.00519 7
(4541 18)	899.93	0.42 9	0.084 18	7.07 10	0.50 11	av $E\beta$ =1601.6 85; ε K=0.1430 19; ε L=0.01897 25; ε M+=0.00515 7
(4543 18)	897.1	0.17 7	0.035 13	7.45 17	0.21 8	av $E\beta$ =1602.9 85; ε K=0.1427 19; ε L=0.01893 25; ε M+=0.00514 7
(4559 18)	881.15	0.37 7	0.073 13	7.14 8	0.44 8	av $E\beta$ =1610.4 85; ε K=0.1411 18; ε L=0.01872 24; ε M+=0.00508 7
(4580 18)	861.0	0.35 7	0.068 13	7.17 9	0.42 8	av $E_{\theta}=1619.9 \ 85; \ \varepsilon K=0.1391 \ 18; \ \varepsilon L=0.01846 \ 24; \ \varepsilon M+=0.00501 \ 7$
(4706 18)	734.52	2.0 3	0.36 6	6.47 8	2.4 4	av $E\beta$ =1679.4 85; ε K=0.1275 16; ε L=0.01691 21; ε M+=0.00459 6
(4734 18)	706.13	3.9 <i>3</i>	0.67 6	6.21 4	4.6 4	av E β =1692.8 85; ε K=0.1250 16; ε L=0.01658 21; ε M+=0.00450 6
(4770 18)	670.20	1.09 14	0.181 23	6.78 6	1.27 16	av E β =1709.7 85; ε K=0.1220 15; ε L=0.01618 20; ε M+=0.00439 6
(4773 18)	667.7	0.27 5	0.044 9	7.40 9	0.31 6	av E β =1710.9 85; ε K=0.1218 15; ε L=0.01615 20; ε M+=0.00438 6

Continued on next page (footnotes at end of table)

¹²¹Cs ε decay (122 s) **1991Ge02** (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Iβ ⁺ †	Ιε†	Log ft	$\mathrm{I}(\varepsilon\!+\!\beta^+)^\dagger$	Comments
(4780 18)	661.0	0.27 7	0.044 11	7.40 12	0.31 8	av $E\beta$ =1714.0 85; ε K=0.1212 15; ε L=0.01608 20; ε M+=0.00436 6
(4783 18)	657.6	0.29 9	0.048 16	7.36 15	0.34 11	av Eβ=1715.6 85; εK=0.1210 15; εL=0.01604 20; εM+=0.00435 6
(4794 18)	646.1	1.12 9	0.182 16	6.78 4	1.30 11	av Eβ=1721.1 85; εK=0.1200 15; εL=0.01592 20; εM+=0.00432 6
(4832 18)	608.3	0.38 9	0.060 15	7.27 11	0.44 11	av Eβ=1738.9 85; εK=0.1170 15; εL=0.01552 19; εM+=0.00421 6
(4848 18)	592.6	0.63 10	0.099 15	7.06 7	0.73 11	av Eβ=1746.3 85; εK=0.1158 14; εL=0.01535 19; εM+=0.00417 5
(4880 18)	560.83	2.0 3	0.30 5	6.58 8	2.3 4	av Eβ=1761.3 85; εK=0.1134 14; εL=0.01503 19; εM+=0.00408 5
(4964 18)	476.16	1.4 3	0.20 4	6.77 9	1.6 3	av Eβ=1801.3 85; εK=0.1072 13; εL=0.01421 17; εM+=0.00386 5
(4981 18)	459.50	13.2 7	1.87 10	5.81 <i>3</i>	15.1 8	av Eβ=1809.2 86; εK=0.1060 13; εL=0.01406 17; εM+=0.00381 5
(5026 18)	414.17	3.4 4	0.47 6	6.41 6	3.9 5	av Eβ=1830.6 86; εK=0.1030 13; εL=0.01365 17; εM+=0.00370 5
(5206 18)	234.52	8.7 4	1.0 1	6.10 <i>3</i>	9.7 5	av Eβ=1915.7 86; εK=0.0918 11; εL=0.01216 14; εM+=0.00330 4
(5244 18)	196.01	7.8 7	0.91 8	6.16 5	8.7 8	av Eβ=1933.9 86; εK=0.0896 11; εL=0.01187 14; εM+=0.00322 4
(5261 18)	179.48	18.5 9	2.13 11	5.80 <i>3</i>	20.6 10	av Eβ=1941.8 86; εK=0.0887 10; εL=0.01175 14; εM+=0.00319 4

[†] Absolute intensity per 100 decays.

$\gamma(^{121}\mathrm{Xe})$

I γ normalization: from I(ce+ γ)(68.5 γ)+ Σ I(γ +ce) to g.s.=100. Unplaced γ 's are not assigned to g.s. or isomeric state.

Eγ	$I_{\gamma}^{\dagger \#}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\ddagger}	Comments
30.3		264.5	(11/2 ⁻)	234.52	7/2 ⁽⁻⁾ ,9/2 ⁽⁻⁾				Intensity balance at 234.5 level requires the existence of 30.3γ (I(γ +ce) \geq 4) as observed in ¹¹² Cd(¹² C,3n γ) (evaluators).
38.4 <i>3</i>	100 4	234.52	7/2 ⁽⁻⁾ ,9/2 ⁽⁻⁾	196.01	7/2 ⁽⁻⁾	M1+E2	0.15 3	14.2 6	$\alpha(K)=11.2 \ 3; \ \alpha(L)=2.4 \ 4; \ \alpha(M)=0.50 \ 9; \ \alpha(N+)=0.113$ I8 $\alpha(N)=0.101 \ 17; \ \alpha(O)=0.0114 \ 16$ Mult : from $\alpha(M)\exp=0.50 \ 5$
55.1 3	32	234.52	7/2 ⁽⁻⁾ ,9/2 ⁽⁻⁾	179.48	7/2 ⁽⁺⁾	[E1]		1.096 23	$\begin{aligned} \alpha(K) = 0.930 \ 19; \ \alpha(L) = 0.133 \ 3; \ \alpha(M) = 0.0269 \ 6; \\ \alpha(N+) = 0.00603 \ 13 \\ \alpha(N) = 0.00541 \ 12; \ \alpha(O) = 0.000618 \ 13 \end{aligned}$
^x 59.3 5	4 1				<i>(</i>)				
69 1	21	264.5	$(11/2^{-})$	196.01	$7/2^{(-)}$	1.01		1.0(7.00	
85.9 3	18 3	239.74	(3/2*)	153.95	(1/2+)	MI		1.267 22	$\alpha(\mathbf{K})=1.087 \ 19; \ \alpha(\mathbf{L})=0.1438 \ 25; \ \alpha(\mathbf{M})=0.0292 \ 5; \\ \alpha(\mathbf{N}+)=0.00680 \ 12 \\ \alpha(\mathbf{N})=0.00605 \ 11; \ \alpha(\mathbf{O})=0.000754 \ 13 \\ \mathbf{M}_{\mathrm{M}} \mathbf{I}_{\mathrm{M}}: \ \text{from } \alpha(\mathbf{K}) \text{avg}=1.2 \ 2.5 \ \mathbf{K} \mathbf{I}_{\mathrm{M}}=7 \ \mathbf{I}_{\mathrm{M}}$
111.0 3	17 2	560.83	(7/2 ⁺)	449.85	(5/2 ⁺)	M1		0.610 <i>10</i>	$\begin{array}{l} \alpha(\mathrm{K}) = 0.524 \ 9; \ \alpha(\mathrm{L}) = 0.0691 \ 11; \ \alpha(\mathrm{M}) = 0.01403 \ 23; \\ \alpha(\mathrm{N} +) = 0.00327 \ 6 \\ \alpha(\mathrm{N}) = 0.00290 \ 5; \ \alpha(\mathrm{O}) = 0.000362 \ 6 \end{array}$
153.9 2	45 5	153.95	(1/2+)	0	5/2 ⁽⁺⁾	E2		0.397	Mult.: from α (K)exp=0.4 <i>l</i> , K/L=7 <i>3</i> . α (K)=0.301 <i>5</i> ; α (L)=0.0766 <i>l</i> 2; α (M)=0.01615 <i>25</i> ; α (N+)=0.00357 <i>6</i> α (N)=0.00323 <i>5</i> ; α (O)=0.000344 <i>6</i> From K/L=3.9 <i>4</i>
179.4 2	1159 20	179.48	7/2 ⁽⁺⁾	0	5/2 ⁽⁺⁾	M1		0.1606	$\alpha(K)(E2)=0.303$ is used as calibration of $\alpha(exp)$. $\alpha(K)=0.1381\ 20;\ \alpha(L)=0.0180\ 3;\ \alpha(M)=0.00366\ 6;$ $\alpha(N+)=0.000852\ 13$ $\alpha(N)=0.000757\ 14;\ \alpha(Q)=0.47\times10^{-5}\ 14$
196.0 2	926 20	196.01	7/2 ⁽⁻⁾	0	5/2 ⁽⁺⁾	E1		0.0325	Mult.: from $\alpha(K)$ exp=0.15 2, K/L=7.4 4. $\alpha(K)$ =0.0281 4; $\alpha(L)$ =0.00358 6; $\alpha(M)$ =0.000723 11; $\alpha(N+)$ =0.0001662 24
210.1 2	8.4 20	449.85	(5/2+)	239.74	(3/2+)	[E2]		0.1360	$\alpha(N)=0.0001482\ 22;\ \alpha(O)=1.80\times10^{-5}\ 3$ Mult.: from $\alpha(K)exp=0.030\ 3,\ K/L=8.2\ 9.$ $\alpha(K)=0.1082\ 16;\ \alpha(L)=0.0221\ 4;\ \alpha(M)=0.00462\ 7;$ $\alpha(N+)=0.001032\ 15$ $\alpha(N)=0.000929\ 14;\ \alpha(O)=0.0001028\ 15$
234.5 2	180 10	414.17	(9/2+)	179.48	7/2 ⁽⁺⁾	M1		0.0780	Mult.: assumed E2 to deduce α . α (K)=0.0671 <i>10</i> ; α (L)=0.00869 <i>13</i> ; α (M)=0.00176 <i>3</i> ;

				1	²¹ Cs ε decay	(122 s)	991Ge02 (co	ntinued)		
$\gamma^{(121}$ Xe) (continued)										
E_{γ}	$I_{\gamma}^{\dagger \#}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	J_f^π	Mult.	α^{\ddagger}	Comments		
239.6 2	67 7	239.74	(3/2+)	0	5/2 ⁽⁺⁾	M1	0.0736	$\alpha(N+)=0.000411 \ 6$ $\alpha(N)=0.000365 \ 6; \ \alpha(O)=4.57\times10^{-5} \ 7$ Mult.: from $\alpha(K)\exp=0.080 \ 15$, K/L=8 1. $\alpha(K)=0.0634 \ 9; \ \alpha(L)=0.00820 \ 12; \ \alpha(M)=0.001664 \ 24;$ $\alpha(N+)=0.000388 \ 6$ $\alpha(N)=0.000344 \ 5; \ \alpha(O)=4.31\times10^{-5} \ 7$		
247.0 3	11 2	706.13	(7/2+)	459.50	(7/2+)	(M1,E2)	0.073 6	Mult.: from $\alpha(K)$ exp=0.075 15, K/L=7.5 8. $\alpha(K)$ =0.061 3; $\alpha(L)$ =0.0098 22; $\alpha(M)$ =0.0020 5; $\alpha(N+)$ =0.00046 10 $\alpha(N)$ =0.00041 10; $\alpha(O)$ =4.8×10 ⁻⁵ 9		
255.9 2	27 3	670.20	(11/2 ⁺)	414.17	(9/2+)	M1	0.0618	$\begin{array}{l} \alpha(\text{K}) \exp = 0.07 \ 3. \\ \alpha(\text{K}) = 0.0532 \ 8; \ \alpha(\text{L}) = 0.00688 \ 10; \ \alpha(\text{M}) = 0.001394 \ 20; \\ \alpha(\text{N}+) = 0.000325 \ 5 \\ \alpha(\text{N}) = 0.000289 \ 4; \ \alpha(\text{O}) = 3.62 \times 10^{-5} \ 6 \end{array}$		
270.2 2	20 3	449.85	(5/2+)	179.48	7/2 ⁽⁺⁾	M1	0.0536	Mult.: from α (K)exp=0.07 2, K/L>7. α (K)=0.0461 7; α (L)=0.00595 9; α (M)=0.001206 17; α (N+)=0.000281 4 α (N)=0.000250 4; α (O)=3.13×10 ⁻⁵ 5		
273.2 <i>3</i> 278.9 <i>3</i>	4 <i>1</i> 50 <i>10</i>	427.12 706.13	(3/2 ⁺ ,5/2 ⁺) (7/2 ⁺)	153.95 427.12	$(1/2^+)$ $(3/2^+, 5/2^+)$	[M1]	0.0493	Mult.: from α (K)exp=0.06 2, K/L=9. α (K)=0.0425 6; α (L)=0.00547 8; α (M)=0.001109 16; α (N+)=0.000258 4 α (N)=0.000230 4; α (O)=2.88×10 ⁻⁵ 5		
280.1 [@] 2	120 [@] 20	459.50	(7/2+)	179.48	7/2 ⁽⁺⁾	M1	0.0487	Mult.: assumed M1 to deduce α . $\alpha(K)=0.0420 \ 6; \ \alpha(L)=0.00541 \ 8; \ \alpha(M)=0.001096 \ 16; \ \alpha(N+)=0.000255 \ 4 \ \alpha(N)=0.000227 \ 4; \ \alpha(\Omega)=2.84\times10^{-5} \ 4$		
280.1 [@] 2	60 [@] 10	476.16	(7/2,9/2,11/2) ⁽⁻⁾	196.01	7/2 ⁽⁻⁾	M1,E2	0.0505 19	$\alpha(K) = 0.0424 \ 8; \ \alpha(L) = 0.0065 \ 11; \ \alpha(M) = 0.00133 \ 24; \ \alpha(N+) = 0.00030 \ 5$		
291.7 2	10 2	706.13	(7/2+)	414.17	(9/2+)	[E2]	0.0458	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.00027 \ 5; \ \alpha(\mathrm{O}) = 3.2 \times 10^{-5} \ 4 \\ \alpha(\mathrm{K}) = 0.0376 \ 6; \ \alpha(\mathrm{L}) = 0.00651 \ 10; \ \alpha(\mathrm{M}) = 0.001348 \ 20; \\ \alpha(\mathrm{N} +) = 0.000304 \ 5 \end{array} $		
295.8 2	17 2	449.85	(5/2+)	153.95	(1/2+)	(E2)	0.0438	$\alpha(N)=0.000273 \ 4; \ \alpha(O)=3.13\times10^{-5} \ 5$ Mult.: assumed E2 to deduce α . $\alpha(K)=0.0360 \ 5; \ \alpha(L)=0.00619 \ 9; \ \alpha(M)=0.001282 \ 19;$ $\alpha(N+)=0.000290 \ 5$ $\alpha(N)=0.000260 \ 4; \ \alpha(O)=2.98\times10^{-5} \ 5$		
320.4 3	25 10	734.52	(7/2+,9/2+)	414.17	(9/2+)	(M1,E2)	0.0341 6	Mult.: from α (K)exp=0.04 <i>1</i> , K/L=5 <i>1</i> . α (K)=0.0288 <i>9</i> ; α (L)=0.0042 <i>5</i> ; α (M)=0.00087 <i>10</i> ; α (N+)=0.000199 <i>20</i>		

S

L

	$\frac{121}{\text{Cs}} \varepsilon \text{ decay (122 s)} \qquad 1991\text{Ge02 (continued)}$											
	$\gamma(^{121}$ Xe) (continued)											
Eγ	$I_{\gamma}^{\dagger \#}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	J_f^π	Mult.	α^{\ddagger}	Comments				
320.9 <i>3</i>	100 10	560.83	(7/2 ⁺)	239.74	(3/2+)	[E2]	0.0337	 α(N)=0.000178 19; α(O)=2.13×10⁻⁵ 14 Mult.: The authors deduce α(K)exp=0.06 3, K/L>6 by assuming mult (320.9γ)=E2. α(K)=0.0279 4; α(L)=0.00465 7; α(M)=0.000960 14; α(N+)=0.000218 4 α(N)=0.000195 3; α(O)=2.25×10⁻⁵ 4 				
x337.2 3	73											
201.7.3	02	560.92	$(7/2^{+})$	170.49	7/2(+)							
381.2.3	25 5	500.85	$(1/2^{+})$	1/9.48	$1/2^{(1)}$			This wis placed from $0.46.2$ level in $\frac{12}{5}C_{2} \rightarrow 0^{+}$ decay (155.5)				
393.2.3	03	037.0 502.6	(13/2)	204.5	(11/2)			This γ is placed from 946.2 level in $\frac{1}{2}$ (155 s).				
390.0 3	28 4	592.0		190.01	$7/2^{(-)}$							
412.5 5	83 <i>5</i>	414.17	(9/2+)	0	$5/2^{(+)}$	(E2)	0.01544	$\alpha(K)=0.01296 \ 19; \ \alpha(L)=0.00198 \ 3; \ \alpha(M)=0.000406 \ 6; \ \alpha(N+)=0.28\times10^{-5} \ 13$				
								$\alpha(N)=8.30\times10^{-5}$ 12; $\alpha(O)=9.81\times10^{-6}$ 14 Mult.: from $\alpha(K)$ exp=0.012 3.				
417.6 <i>3</i>	10 2	978.4		560.83	$(7/2^+)$							
422.9 4	73	657.6	$(13/2^{-})$	234.52	$7/2^{(-)}, 9/2^{(-)}$							
427.1 2	81 6	427.12	(3/2+,5/2+)	0	5/2 ⁽⁺⁾	(M1,E2)	0.0153 13	α (K)=0.0130 <i>12</i> ; α (L)=0.00180 <i>3</i> ; α (M)=0.000367 <i>6</i> ; α (N+)=8.47×10 ⁻⁵ <i>14</i>				
								$\alpha(N)=7.55\times10^{-5}$ 12; $\alpha(O)=9.2\times10^{-6}$ 4 Mult.: (M1,E2)+E0? from $\alpha(K)\exp=0.023$ 4, K/L=6 2.				
431.3 2	17 <i>3</i>	881.15		449.85	$(5/2^+)$							
^x 445.4 3	4 1											
450.1 2	3.9 20	449.85	$(5/2^+)$	0	$5/2^{(+)}$							
450.1 2	50 4	646.1		196.01	$7/2^{(-)}$			This γ is placed from 449.84 level in ¹²¹ Cs $\varepsilon + \beta^+$ decay (155 s).				
459.7 <i>3</i>	460 20	459.50	$(7/2^+)$	0	$5/2^{(+)}$	M1	0.01372	$\alpha(K)=0.01185 \ 17; \ \alpha(L)=0.001501 \ 22; \ \alpha(M)=0.000304 \ 5;$				
								α (N+)=7.08×10 ⁻⁵ 10				
								$\alpha(N)=6.29\times10^{-5}$ 9; $\alpha(O)=7.90\times10^{-6}$ 12				
								Mult.: from α (K)exp=0.016 3, K/L=9 2.				
460 1	15 5	1020.8	$(11/2^+)$	560.83	$(7/2^+)$							
465.0 <i>3</i>	12 3	661.0		196.01	$7/2^{(-)}$							
471.7 2	12 2	667.7		196.01	$7/2^{(-)}$							
486.1 <i>3</i>	63	899.93		414.17	$(9/2^+)$							
491.0 <i>3</i>	20 5	670.20	$(11/2^+)$	179.48	7/2(+)							
526.7 2	48 6	706.13	(7/2+)	179.48	7/2 ⁽⁺⁾	M1,E2	0.0088 11	$\alpha = 0.0088 \ 11; \ \alpha(K) = 0.0075 \ 10; \ \alpha(L) = 0.00101 \ 7; \ \alpha(M) = 0.000204$ $12; \ \alpha(N+) = 4.7 \times 10^{-5} \ 3$ $\alpha(N) = 4.2 \times 10^{-5} \ 3; \ \alpha(O) = 5.2 \times 10^{-6} \ 5$ Mult.: from $\alpha(K)$ exp=0.11 4.				
548.8 <i>3</i>	8 2	998.72		449.85	$(5/2^+)$							
555.0 <i>3</i>	46 5	734.52	$(7/2^+, 9/2^+)$	179.48	$7/2^{(+)}$							
571.6 2	25 4	998.72		427.12	$(3/2^+, 5/2^+)$							
584.6 <i>3</i>	11 2	998.72		414.17	$(9/2^+)$							

6

L

¹²¹₅₄Xe₆₇-6

					¹²¹ Cs ε d	ecay (122 s)	1991	1991Ge02 (continued)				
					$\gamma(^{121}$ Xe) (continued)							
Eγ	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Eγ	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{E}_{f}	\mathbf{J}_f^π		
^x 646.8 3	12 3					^x 949.2 3	83					
665.0 2	16 3	861.0		196.01	$7/2^{(-)}$	970.0 4	14 5	1149.4	179.48	$7/2^{(+)}$		
^x 674.8 2	72					^x 986.3 4	63					
686.3 5	8 <i>3</i>	1247.1		560.83	$(7/2^+)$	1005.2 3	11 <i>3</i>	1419.7	414.17	$(9/2^+)$		
^x 690.5 2	84					1035.5 4	94	1596.3	560.83	$(7/2^+)$		
701.1 <i>3</i>	8 <i>3</i>	897.1		196.01	$7/2^{(-)}$	^x 1060.3 4	8 <i>3</i>					
706.2 2	54 7	706.13	$(7/2^+)$	0	$5/2^{(+)}$	1065.5 <i>3</i>	22 <i>3</i>	1261.5	196.01	$7/2^{(-)}$		
720.1 3	13 <i>3</i>	899.93		179.48	$7/2^{(+)}$	^x 1076.7 4	8 <i>3</i>					
730.8 2	14 <i>3</i>	910.23		179.48	$7/2^{(+)}$	1103.6 4	17 <i>3</i>	1299.56	196.01	$7/2^{(-)}$		
734.5 [@] 3	20 [@] 6	734.52	$(7/2^+, 9/2^+)$	0	$5/2^{(+)}$	^x 1115.0 8	74					
734.5 [@] 10	20 [@] 6	1149.4		414.17	$(9/2^+)$	1120.0 4	9 <i>3</i>	1299.56	179.48	$7/2^{(+)}$		
738.4 <i>3</i>	26 5	1299.56		560.83	$(7/2^+)$	^x 1140.3 4	30 5					
^x 797.9 4	8 2					1163.9 <i>3</i>	15 4	1343.5	179.48	$7/2^{(+)}$		
^x 841.9 4	72					^x 1179.8 5	52					
^x 850.5 3	10 3					1240.9 4	62	1419.7	179.48	$7/2^{(+)}$		
^x 867.2 4	62					^x 1255.2 5	63					
872.5 <i>3</i>	92	1299.56		427.12	$(3/2^+, 5/2^+)$	^x 1276.4 6	10 3					
^x 881.2 3	52					1299.4 5	82	1299.56	0	$5/2^{(+)}$		
885.7 <i>3</i>	14 2	1299.56		414.17	$(9/2^+)$	1343.7 5	73	1343.5	0	$5/2^{(+)}$		
^x 891.6 3	72					^x 1396.2 5	73					
x900.2 3	82					x1416.5 5	10 3					
^x 905.4 4	42			-		×1432.7 5	40 6					
910.1 <i>3</i>	17 3	910.23		0	$5/2^{(+)}$	[*] 1458.0 6	83					
~914.3 <i>3</i>	10 2					^1497.76	83					
~922.6 <i>3</i>	12 2					~1511.1.6	83					
	122											

[†] Evaluator has removed the contribution from ¹²¹Cs ε decay (155 s). Evaluator assumed no direct $\varepsilon + \beta^+$ feeding from ¹²¹Cs ε decay (122 s) to the levels at 153.95 keV, 239.74 keV, 264.5 keV, 427.12 keV and 449.85 keV which are strongly fed from ¹²¹Cs $3/2^{(+)}$, and also assumed no direct $\varepsilon + \beta^+$ feeding to the levels at 179.44 keV and 196.081 keV which are strongly fed from ¹²¹Cs $9/2^{(+)}$ state. See ¹²¹Cs ε decay (155 s).

[±] Normalized to α (K)exp=0.303 for 153.9 γ (E2 theory).

[#] For absolute intensity per 100 decays, multiply by 0.0261.

[@] Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

¹²¹₅₄Xe₆₇-7

Legend

¹²¹Cs ε decay (122 s) 1991Ge02

Decay Scheme

¹²¹Cs ε decay (122 s) 1991Ge02

