¹²¹Te IT decay 1971Ed03,1972Ka61,1975Me23

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Ohya	NDS 111, 1619 (2010)	20-Jan-2009

Parent: ¹²¹Te: E=293.974 22; J^{π}=11/2⁻; T_{1/2}=164.2 d 8; %IT decay=88.6 *11* ¹²¹Te-T_{1/2}: from Adopted Levels. 1971Ed03: ¹²³Sb(p,3n), magnetic spectrometer, ce-ce(θ), ce $\gamma(\theta)$. 1972Ka61: ¹²⁰Te(n, γ), magnetic spectrometer, ce. 1975Me23: ¹²⁰Te(n, γ), semi γ . Others: 1950Ka04, 1956Go23, 1963Sc12, 1964Ch08, 1968Ma52. See also ¹²¹Te ε decay (154 d).

¹²¹Te Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0	1/2 ⁺	19.17 [†] d <i>4</i>	T _{1/2} : from (ce 81γ)(ce 212γ)(t) centroid shift scin-scin (1963Sc12).
212.19 <i>3</i>	3/2 ⁺	0.062 ns <i>15</i>	
293.98 <i>3</i>	11/2 ⁻	164.2 [†] d 8	

[†] From Adopted Levels.

Iy normalization: from $I(\gamma + ce 212\gamma) = 100$.

 \mathbf{P}

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	a#	$I_{(\gamma+ce)}$ ‡	Comments
81.788 <i>15</i>	0.0626 6	293.98	11/2-	212.19	3/2+	M4		1735	108.69 9	$\overline{ce(K)/(\gamma+ce)}=0.390 \ 6; \ ce(L)/(\gamma+ce)=0.472 \ 7; \\ ce(M)/(\gamma+ce)=0.1135 \ 22; \ ce(N+)/(\gamma+ce)=0.0237 \ 5 \\ ce(N)/(\gamma+ce)=0.0218 \ 5; \ ce(O)/(\gamma+ce)=0.00187 \ 4 \\ I_{(\gamma+ce)}: \ from \ an \ intensity \ balance \ at \ the \ 212 \ level. \\ I_{\gamma}: \ from \ TI \ and \ \alpha. \\ K:L:M:N=0.74:1.0:0.235:0.066 \ (1972Ka31,1972Ka61) \\ K:L:M=0.82:1.0:0.23 \ (1968Ma52) \\ K:L:M:N=0.83:1.0:0.24:0.059 \ (1968Ha53). \\ Additional \ information \ 1. \\ \end{array}$
212.189 27	100	212.19	3/2+	0.0	1/2+	M1+E2	+0.226 8	0.0869	108.69 9	ce(K)/(γ+ce)=0.0687 9; ce(L)/(γ+ce)=0.00903 13; ce(M)/(γ+ce)=0.00181 3; ce(N+)/(γ+ce)=0.000395 6 ce(N)/(γ+ce)=0.000356 6; ce(O)/(γ+ce)=3.83×10 ⁻⁵ 6 Mult.: from α(K)exp=0.0768 17 (1971Ed03), α(K)exp=0.0842 14 (1968Ma52) L1:L2:L3=100:8.1:3.7 (1964Ch08). 1968Ma52 discussed the existence of dynamic penetration effect (λ =7 1) in calculation of conversion coefficients. 1971Ed03 deduced λ =-0.7 17 from ce-ce(θ), ce $\gamma(\theta)$. δ: from 1971Ed03. Others: 0.230 (1968Ma52), 0.224 (1964Ch08).

[†] From 1975Me23. An additional uncertainty of 10 eV should be added in quadrature to the quoted uncertainties to allow for uncertainties in calibration.

 ‡ For absolute intensity per 100 decays, multiply by 0.815 $\mathit{10}.$

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

