¹¹⁹Sn(α,2nγ),¹²¹Sb(d,2nγ) 1979Ha47,1979Ha18

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Ohya	NDS 111, 1619 (2010)	20-Jan-2009

1979Ha18: E=19.8-27 MeV; γ singles, excitation functions, $\gamma\gamma$ coincidence, linear polarization; deduced the half-life of the 443-keV level.

1979Ha47: semi γ singles, excitation functions, $\gamma\gamma$ -coincidence, I $\gamma(\theta)$; solenoidal electron spectrometer was used for ce. Also 121 Sb(d,2n γ) E(d)=13.5 MeV was studied.

1980Io01: ¹¹⁸Sn(α ,2n γ) E=24 MeV; ¹²¹Sb(d,2n γ) E=12 MeV; beam delayed γ coincidence and differentially perturbed angular distribution; deduced the T_{1/2} and g-factor of the 443-keV level.

The level scheme is that proposed by 1979Ha47, however, a slight modification is made to place the cascading 244.8 γ , 219.4 γ directly on the 293.98 level, resulting in a level at 538.7 keV interconnecting the 293.89 keV, 11/2⁻ and the 758.4 keV, (7/2⁻) states, which is established in ¹²¹I ε + β ⁺ decay. The 1482 keV level was removed to accommodate with other in-beam studies.

¹²¹Te Levels

E(level)	Jπ&	T _{1/2}	Comments
0.0	$1/2^{+}$		
212.18 [@] 9	$3/2^{+}$		Additional information 1.
293.98 [†] <i>3</i>	$11/2^{-}$	164.2 d 8	Additional information 2.
438.57 [†] 9	(9/2)-		
443.08 [#] 10	7/2+	85.3 ns 5	$\mu = +0.738 \ 10$
			μ : from DPAD (1980Io01).
475 24@ 0	(5/2) +		$T_{1/2}$: from beam- $\gamma(t)$ (19801001); other: 86 ns 6 (1979Ha47).
4/5.24 9	$(3/2)^{+}$ $3/2^{+}$ $5/2^{+}$		
538 79 [†] 10	$(7/2^{-})$		
594.38^{\ddagger} 10	$(5/2)^+$		
682.98 [@] 9	$(7/2^+)$		
758.25 19	$(7/2^{-})$		
830.50 [#] 14	$(9/2)^+$		
887.7 [‡] 4			
925.58 10	$(15/2)^{-}$		
975.28 9	$(13/2)^{-}$		
1018.41 [@] 17	$(9/2^+)$		
1080.26 [#] 14	$(11/2^+)$		
1171.0 [‡] 4	(110-)		
1177.48 16	$(11/2^{-})$		This level is proposed as $13/2^{-1}$ in $1h_{11/2}$ band in this reaction (19/9Ha4/), but
$1207.00^{@}$ 13	$(11/2^{+})$		Tennerpreted as band head of γ band based on $1n_{11/2}$ in Cu(Be,4n γ).
1207.99 13 $1410 44^{\#} 16$	(11/2) $(13/2^+)$		
1509 58 13	$(15/2^{-})$		
1654 28 [†] 13	$(17/2)^{-}$		
1711 85 [#] 17	$(15/2^+)$		
$1806.69^{@} 24$	$(15/2^+)$		
1851.48? 19	(
2015.98 [†] 14	$(21/2)^{-}$		
2070.3 [#] 3	$(17/2^+)$		
2281.48 17	$(23/2^+)$		

Continued on next page (footnotes at end of table)

¹¹⁹Sn(α ,2n γ),¹²¹Sb(d,2n γ) 1979Ha47,1979Ha18 (continued)

¹²¹Te Levels (continued)

E(level)	Jπ&
2332.08 [†] 17	(23/2) ⁻
2952.8? 4	23/2,25/2

[†] Band(A): band built on $1h_{11/2}$.

[‡] Band(B): band built on $2d_{5/2}$.

[#] Band(C): band built on $1g_{7/2}$. [@] Band(D): band built on $2d_{3/2}$.

& From rotational band based on shell model configurations; band structures evidenced from M1, M1+E2(D(+Q)) cascades, and E2(Q) cross over transitions, and also from other in-beam studies.

					¹¹⁹ Sn(α ,2	$2n\gamma$), ¹²¹ Sb(d,2n γ) 1 9	979Ha47,197	79Ha18 (co	ontinued)
							$\gamma(^{12})$	Te)		
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	Mult. [#]	$\delta^{@}$	α b	$I\gamma^{\ddagger}$	Comments
144.6 <i>1</i>	36.8 4	438.57	(9/2)-	293.98	11/2-	M1+E2	-0.29 10	0.259 13	41.1 3	$\begin{array}{l} \mbox{ce(K)}/(\gamma + ce) = 0.175 \ 6; \ ce(L)/(\gamma + ce) = 0.025 \ 3; \\ \mbox{ce(M)}/(\gamma + ce) = 0.0050 \ 6; \ ce(N +)/(\gamma + ce) = 0.00109 \ 11 \\ \mbox{ce(N)}/(\gamma + ce) = 0.00099 \ 11; \ ce(O)/(\gamma + ce) = 0.000103 \ 9 \\ \mbox{Mult.: } A_2 = +0.14 \ 6, \ A_4 = 0.00 \ 8, \ L(p) = -0.31 \ 5; \\ \mbox{α(K)exp = 0.17 \ 2, \ K/L = 7.6 \ 10.} \end{array}$
189.6 ^{&} 2 202.1 2	1.2 <i>3</i> 1.1 <i>3</i>	1207.99 1177.48	$(11/2^+)$ $(11/2^-)$	1018.41 975.28	(9/2 ⁺) (13/2) ⁻				0.2 1	I γ : obscured or disturbed by other γ in ¹²¹ Sb(d,2n γ).
207.7 ^{&} 2	2.8 6	682.98	$(7/2^+)$	475.24	$(5/2)^+$				3.4 4	
212.2 1	100.0 7	212.18	3/2+	0.0	1/2+	M1+E2	+0.226 8	0.0869	100	$\begin{array}{l} {\rm ce}({\rm K})/(\gamma+{\rm ce})=0.0687\ 9;\ {\rm ce}({\rm L})/(\gamma+{\rm ce})=0.00903\ 13;\\ {\rm ce}({\rm M})/(\gamma+{\rm ce})=0.00181\ 3;\ {\rm ce}({\rm N}+)/(\gamma+{\rm ce})=0.000395\ 6\\ {\rm ce}({\rm N})/(\gamma+{\rm ce})=0.000356\ 6;\ {\rm ce}({\rm O})/(\gamma+{\rm ce})=3.83\times10^{-5}\ 6\\ {\rm Mult.:\ A_2}=-0.03\ 3,\ {\rm A_4}=0.00\ 4,\ {\rm L}({\rm p})=-0.24\ 3;\\ \alpha({\rm K}){\rm exp}=0.076\ 4,\ {\rm K/L}=7.8\ 8. \end{array}$
219.4 2	1.8 3	758.25	$(7/2^{-})$	538.79	$(7/2^{-})$	E2		0.0010	4.6 5	22(K)/(2L+22) = 0.0687.0; 22(L)/(2L+22) = 0.01240.18;
244.8 <i>1</i>	14.5 4	538.79	(7/2 ⁻)	212.18	11/2-	E2		0.0919	28.2 3	$\begin{aligned} & (e(K))(\gamma+ce)=0.0087 \ 9; \ ce(L)/(\gamma+ce)=0.01240 \ 18; \\ & (e(M))(\gamma+ce)=0.00253 \ 4; \ ce(N+)/(\gamma+ce)=0.000532 \ 8 \\ & (e(N)/(\gamma+ce)=0.000486 \ 7; \ ce(O)/(\gamma+ce)=4.65\times10^{-5} \ 7 \\ & Mult.: \ A_2=+0.19 \ 4, \ A_4=-0.03 \ 6, \ L(p)=+0.30 \ 8; \\ & \alpha(K)exp=0.077 \ 4, \ K/L=5.0 \ 6. \\ & (e(K)/(\gamma+ce)=0.0575 \ 8; \ ce(L)/(\gamma+ce)=0.01012 \ 15; \\ & (ce(M)/(\gamma+ce)=0.00206 \ 3; \ ce(N+)/(\gamma+ce)=0.000435 \ 7 \\ & (e(N)/(\gamma+ce)=0.000396 \ 6; \ ce(O)/(\gamma+ce)=3.82\times10^{-5} \ 6 \\ & Mult.: \ A_2=+0.04 \ 5, \ A_4=-0.07 \ 6; \ \alpha(K)exp=0.043 \ 6, \\ & M1+E2 \ was assigned \ (1979Ha47). \end{aligned}$
249.8 ^{cc} 2	1.2.3	1080.26	$(11/2^+)$ $(5/2)^+$	830.50	(9/2)' 3/2 ⁺				0.5 I	
265.5 1	7.0 4	2281.48	$(23/2^+)$	2015.98	(21/2) ⁻	(E1)		0.01307	2.2 2	$\begin{aligned} &\alpha(\mathrm{K}) = 0.01132 \ 16; \ \alpha(\mathrm{L}) = 0.001403 \ 20; \ \alpha(\mathrm{M}) = 0.000278 \\ &4; \ \alpha(\mathrm{N}+) = 6.05 \times 10^{-5} \ 9 \\ &\alpha(\mathrm{N}) = 5.47 \times 10^{-5} \ 8; \ \alpha(\mathrm{O}) = 5.81 \times 10^{-6} \ 9 \\ &\mathrm{I}_{\gamma}: \ \text{not determined in} \ ^{121}\mathrm{Sb}(\mathrm{d},2n\gamma)). \\ &\mathrm{Mult.:} \ \mathrm{A}_2 = -0.31 \ 12, \ \mathrm{A}_4 = 0.00 \ 15, \ \mathrm{L}(\mathrm{p}) = -0.31 \ 9. \\ &\delta: \ -0.03 \ 7 \ (\text{if D+Q}). \end{aligned}$
283.3 2	1.7 4	1171.0		887.7						I γ : obscured or disturbed by other γ in ¹²¹ Sb(d,2n γ).
292.3 3	3.1 5	1711.85	$(15/2^+)$	1419.44	$(13/2^+)$				7.2 2	Iy: doublet(293.3 γ +292.3 γ) in ¹²¹ Sb(d,2n γ).
293.3 3	4.4 5	887.7		594.38	(5/2)+				7.2.2	<i>l</i> γ: doublet (293.3γ+292.3γ) in ¹²¹ Sb(d,2nγ). Mult.: A ₂ =-0.47 <i>l</i> 0, A ₄ =-0.17 <i>l</i> 6 for (292.3γ+293.3γ) α (K)exp=0.024 4 for (292.3γ+293.3γ).
316.1 1	26.9 7	2332.08	(23/2)-	2015.98	(21/2)-	M1+E2	-0.06 4	0.0298	1.6 3	$ce(K)/(\gamma+ce)=0.0251 \ 4; \ ce(L)/(\gamma+ce)=0.00316 \ 5; ce(M)/(\gamma+ce)=0.000629 \ 9; \ ce(N+)/(\gamma+ce)=0.0001381 20 ce(N)/(\gamma+ce)=0.0001246 \ 18; \ ce(O)/(\gamma+ce)=1.356\times10^{-5} 20 $

ω

 $^{121}_{52}$ Te₆₉-3

L

				119	9 Sn(α ,2n γ	/), ¹²¹ Sb(d,2	2n γ) 197	79Ha47,197	9Ha18 (c	ontinued)
γ ⁽¹²¹ Te) (continued)										
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	$\alpha^{\boldsymbol{b}}$	$I\gamma^{\ddagger}$	Comments
										ce(N)/(γ +ce)=0.0001246 <i>18</i> ; ce(O)/(γ +ce)=1.356×10 ⁻⁵ 20 Mult.: A ₂ =-0.38 5, A ₄ =0.00 7, L(p)=-0.27 4; α (K)exp=0.024 2, K/I = 8.2
319.8 ^c 3	4.0 [°] 6	532.14	3/2+,5/2+	212.18	3/2+				6.2 3	If γ : Multiply-placed γ ray with intensity not divided in ¹²¹ Sb(d,2n γ).
319.8 [°] 3	4.0 [°] 6	758.25	(7/2-)	438.57	(9/2)-				6.2 3	
339.2 1 358 7 <mark>6</mark> 2	5.2 5	1419.44	$(13/2^+)$ $(17/2^+)$	1080.26	$(11/2^+)$ $(15/2^+)$				1.3 3	Let not determined in 121 Sh(d 2na))
361.7 <i>1</i>	71.0 9	2015.98	$(1/2)^{-}$	1654.28	$(13/2)^{-}$ $(19/2)^{-}$	M1+E2	-0.15 4	0.0211	4.2 2	ry: not determined in S0(d,2fry)). ce(K)/(γ +ce)=0.01789 25; ce(L)/(γ +ce)=0.00225 4; ce(M)/(γ +ce)=0.000449 7; ce(N+)/(γ +ce)=9.85×10 ⁻⁵ 14
382.2.1	616	594 38	(5/2)+	212 18	3/2+				11.0.5	ce(N)/(γ +ce)=8.89×10 ⁻⁵ 13; ce(O)/(γ +ce)=9.67×10 ⁻⁶ 14 Mult.: A ₂ =-0.52 4, A ₄ =-0.01 5, L(p)=-0.20 3; α (K)exp=0.019 2.
387.4 1	21.6 7	830.50	$(9/2)^+$	443.08	7/2 ⁺	M1+E2	-4.6 6	0.01728	15.4 4	ce(K)/(γ +ce)=0.01434 20; ce(L)/(γ +ce)=0.00212 3; ce(M)/(γ +ce)=0.000428 6; ce(N+)/(γ +ce)=9.17×10 ⁻⁵ 13 c(N)/(γ +ce)=0.22×10 ⁻⁵ 12; cr(Ω)/(ω +cr) 8.47×10 ⁻⁶ 12
416.4 <i>1</i>	14.0 6	2015.98	(21/2)-	1599.58	(17/2 ⁻)	(E2)		0.01388		ce(N)/(γ +ce)=8.35×10 ° 12; ce(O)/(γ +ce)=8.47×10 ° 12 Mult.: A ₂ =-0.27 5, A ₄ =+0.14 7, L(p)=+0.19 2; α (K)exp=0.014 4. α (K)=0.01174 17; α (L)=0.001717 24; α (M)=0.000346 5; α (N+)=7.42×10 ⁻⁵ 11 α (N)=6.74×10 ⁻⁵ 10; α (O)=6.88×10 ⁻⁶ 10 Iy: not determined in ¹²¹ Sb(d,2n γ)). Mult.: A ₂ =+0.47 9, A ₄ =-0.02 13, L(p)=+0.93 24;
<i>x</i> 419.6.3	255								213	α (K)exp=0.013 3.
470.8 1	23.3 6	682.98	(7/2+)	212.18	3/2+	(E2)			26.0 5	ce(K)/(γ +ce)=0.00815 <i>12</i> ; ce(L)/(γ +ce)=0.001156 <i>17</i> ; ce(M)/(γ +ce)=0.000232 <i>4</i> ; ce(N+)/(γ +ce)=5.01×10 ⁻⁵ <i>7</i> ce(N)/(γ +ce)=4.54×10 ⁻⁵ <i>7</i> ; ce(O)/(γ +ce)=4.68×10 ⁻⁶ <i>7</i> Mult.: A ₂ =+0.24 <i>7</i> , A ₄ =-0.03 <i>9</i> , L(p)=+0.39 <i>15</i> ;
475.2 1	19.6 5	475.24	(5/2)+	0.0	1/2+	(E2)			29.4 5	$\alpha(\text{K})\exp(4/5.2\gamma + 4/0.8\gamma)=0.0074 11.$ $ce(\text{K})/(\gamma+ce)=0.00794 11; ce(\text{L})/(\gamma+ce)=0.001124 16;$ $ce(\text{M})/(\gamma+ce)=0.000226 4; ce(\text{N}+)/(\gamma+ce)=4.87\times10^{-5} 7$ $ce(\text{N})/(\gamma+ce)=4.41\times10^{-5} 7; ce(\text{O})/(\gamma+ce)=4.56\times10^{-6} 7$ Mult: $A_2=+0.24 6, A_4=-0.02 8, L(p)=+0.40 13;$ (475)
525.0 <i>1</i>	19.2 7	1207.99	(11/2 ⁺)	682.98	(7/2+)	(E2)			11.9 4	$\frac{\alpha(N)\exp(4/5.2\gamma + 4/0.8\gamma)=0.0074}{(\gamma+ce)=0.00603} \frac{9}{9}; ce(L)/(\gamma+ce)=0.000835}{12}; ce(M)/(\gamma+ce)=0.0001674} \frac{24}{24}; ce(N+)/(\gamma+ce)=3.62\times10^{-5} \frac{10}{5}$

4

 $^{121}_{52}{\rm Te}_{69}$ -4

				¹¹⁹ S	¹¹⁹ Sn(α ,2n γ), ¹²¹ Sb(d,2n γ)			Ha47,1979I	Ha18 (continued)		
γ ⁽¹²¹ Te) (continued)											
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_{f}	J_f^π	Mult. [#]	$\delta^{@}$	$I\gamma^{\ddagger}$	Comments		
532 3 3	956	532 14	3/2+ 5/2+	0.0	1/2+			954	$\frac{\text{ce(N)}}{(\gamma+\text{ce})=3.28\times10^{-5} \text{ 5; ce(O)}}{(\gamma+\text{ce})=3.41\times10^{-6} \text{ 5}}$ Mult.: A ₂ =+0.22 6, A ₄ =-0.09 8, L(p)=+0.32 13.		
536.6 2	13.1 6	975.28	$(13/2)^{-}$	438.57	(9/2) ⁻	(E2)		6.0 4	 ce(K)/(γ+ce)=0.00568 8; ce(L)/(γ+ce)=0.000783 11; ce(M)/(γ+ce)=0.0001570 22; ce(N+)/(γ+ce)=3.39×10⁻⁵ 5 ce(N)/(γ+ce)=3.07×10⁻⁵ 5; ce(O)/(γ+ce)=3.20×10⁻⁶ 5 E_γ: adopted from level scheme (authors gave a value of 535.6 keV in their table). Mult.: A₂=+0.21 11, A₄=+0.04 15, L(p)=+0.37 22. 		
543.2 2	10.6 7	1018.41	$(9/2^+)$	475.24	$(5/2)^+$	(Q)		10.4 4	Mult.: $A_2 = +0.25$ 12, $A_4 = -0.33$ 17.		
588.8 2	23.4 8	1419.44	(13/2+)	830.50	(9/2)+	(E2)		10.9 4	$ce(K)/(\gamma+ce)=0.00444\ 7;\ ce(L)/(\gamma+ce)=0.000601\ 9;\\ce(M)/(\gamma+ce)=0.0001203\ 17;\ ce(N+)/(\gamma+ce)=2.61\times10^{-5}\ 4\\ce(N)/(\gamma+ce)=2.36\times10^{-5}\ 4;\ ce(O)/(\gamma+ce)=2.47\times10^{-6}\ 4\\Mult:\ A_{2}=+0.26\ 5,\ A_{4}=-0.08\ 7,\ L(p)=+0.40\ 11.$		
594.4 <i>3</i>	13.6 7	594.38	(5/2)+	0.0	1/2+	(E2)		9.2 6	ce(K)/(γ +ce)=0.00433 6; ce(L)/(γ +ce)=0.000585 9; ce(M)/(γ +ce)=0.0001171 17; ce(N+)/(γ +ce)=2.54×10 ⁻⁵ 4 ce(N)/(γ +ce)=2.30×10 ⁻⁵ 4; ce(O)/(γ +ce)=2.41×10 ⁻⁶ 4 I γ : obscured or disturbed by other γ in ¹²¹ Sb(d,2n γ). Mult.: A ₂ =+0.24 12, A ₄ =+0.23 17, L(p)=+0.39 15;		
598.7 2	20.7 8	1806.69	$(15/2^+)$	1207.99	$(11/2^+)$	(Q)		11.8 6	Mult.: $A_2 = +0.35 \ 9$, $A_4 = +0.01 \ 12$.		
624.3 ^{&} 3	21.9 14	1599.58	(17/2 ⁻)	975.28	(13/2)-	(E2)		3.3 4	$\begin{aligned} & \operatorname{ce}(\mathbf{K})/(\gamma + \operatorname{ce}) = 0.00381 \ 6; \ & \operatorname{ce}(\mathbf{L})/(\gamma + \operatorname{ce}) = 0.000511 \ 8; \\ & \operatorname{ce}(\mathbf{M})/(\gamma + \operatorname{ce}) = 0.0001022 \ 15; \ & \operatorname{ce}(\mathbf{N}+)/(\gamma + \operatorname{ce}) = 2.22 \times 10^{-5} \ 4 \\ & \operatorname{ce}(\mathbf{N})/(\gamma + \operatorname{ce}) = 2.00 \times 10^{-5} \ 3; \ & \operatorname{ce}(\mathbf{O})/(\gamma + \operatorname{ce}) = 2.11 \times 10^{-6} \ 3 \\ & \operatorname{Mult.:} \ \mathbf{A}_2 = +0.43 \ 8, \ \mathbf{A}_4 = -0.02 \ 12, \ \mathbf{L}(\mathbf{p}) = +0.81 \ 20. \end{aligned}$		
631.6 ^{<i>d</i>} 1	207.5 ^{<i>d</i>} 30	925.58	(15/2) ⁻	293.98	11/2-	E2		45.0 12	 ce(K)/(γ+ce)=0.00370 6; ce(L)/(γ+ce)=0.000495 7; ce(M)/(γ+ce)=9.89×10⁻⁵ 14; ce(N+)/(γ+ce)=2.15×10⁻⁵ 3 ce(N)/(γ+ce)=1.94×10⁻⁵ 3; ce(O)/(γ+ce)=2.05×10⁻⁶ 3 Iγ: Multiply-placed γ ray with intensity not divided in ¹²¹Sb(d,2nγ). Mult.: A₂=+0.33 4, A₄=-0.08 4, L(p)=+0.55 9; α(K)exp=0.0037 4. 		
631.6 ^{<i>d</i>} 1 637.2 1	19.5 ^d 10 25.4 13	1711.85 1080.26	(15/2 ⁺) (11/2 ⁺)	1080.26 443.08	(11/2 ⁺) 7/2 ⁺	(E2)		14.2 6	$ce(K)/(\gamma+ce)=0.00362 \ 5; \ ce(L)/(\gamma+ce)=0.000483 \ 7; ce(M)/(\gamma+ce)=9.66\times10^{-5} \ 14; \ ce(N+)/(\gamma+ce)=2.10\times10^{-5} \ 3 ce(N)/(\gamma+ce)=1.90\times10^{-5} \ 3; \ ce(O)/(\gamma+ce)=2.00\times10^{-6} \ 3 Mult : (\lambda_{2}-z)=0.033 \ 7, \ \lambda_{2}-z=0.033 \ 7, \ \lambda$		
650.9 2	9.6 7	2070.3	$(17/2^+)$	1419.44	$(13/2^+)$	(Q)		2.0 3	It is a second start of the second s		
674.0 ^{<i>c</i>} 1	35.2 ^c 11	1599.58	(17/2 ⁻)	925.58	(15/2)-	(M1+E2)	-0.9 5	5.4 4	Mult.: $A_2=+0.46 \ 12$, $A_4=-0.10 \ 18$. $ce(K)/(\gamma+ce)=0.0036 \ 3$; $ce(L)/(\gamma+ce)=0.000454 \ 23$; $ce(M)/(\gamma+ce)=9.0\times10^{-5} \ 5$; $ce(N+)/(\gamma+ce)=1.98\times10^{-5} \ 11$ $ce(N)/(\gamma+ce)=1.78\times10^{-5} \ 9$; $ce(O)/(\gamma+ce)=1.93\times10^{-6} \ 12$		

S

 $^{121}_{52}$ Te₆₉-5

				¹¹⁹ Sn	$(\alpha, 2\mathbf{n}\gamma),^{12}$	¹ Sb(d,2n γ)	1979	Ha47,1979Ha18 (continued)			
γ ⁽¹²¹ Te) (continued)											
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [#]	$I\gamma^{\ddagger}$	Comments			
								Iy: Multiply-placed γ ray with intensity not divided in ¹²¹ Sb(d,2n γ). Mult: $\Delta_{2} = -0.985$, $\Delta_{4} = +0.07.8$ L (p)=+0.14.4: α (K)exp=0.0039.9			
674.0 ^{ce} 1	35.2 ^c 11	1851.48?		1177.48	$(11/2^{-})$		7.5 4	In Multiply-placed γ ray with intensity not divided in ¹²¹ Sb(d,2n γ).			
677.8 ^{&} 3	11.6 10	2332.08	$(23/2)^{-}$	1654.28	$(19/2)^{-}$	(O)	3.9 <i>3</i>	Mult.: $A_2 = +0.52$ 12, $A_4 = +0.06$ 21.			
681.3 <i>1</i>	45.0 13	975.28	(13/2)-	293.98	11/2-	M1+E2	21.4 6	$ce(K)/(\gamma+ce)=0.0035 4; ce(L)/(\gamma+ce)=0.00044 4; ce(M)/(\gamma+ce)=8.7\times10^{-5} 7; ce(N+)/(\gamma+ce)=1.91\times10^{-5} 16$			
								$ ce(N)/(\gamma+ce)=1.72\times10^{-6} I5; ce(O)/(\gamma+ce)=1.88\times10^{-6} I9 $ $ Mult: A_2=-0.64 4; A_4=+0.20 6, L(p)=+0.04 4; \alpha(K)exp=0.0030 7. $			
								$0: -0.43 \le 0 \le -0.28$ or $-2.3 \le 0 \le -1.0$. O value given in the authors table for the 677.8 keV shown as (F2) was interpreted as the data for this γ ray			
^x 724.4 3	9.9 12						7.4 6	This γ was placed from 1482 keV level in 1979Ha47.			
728.7 1	131.4 18	1654.28	(19/2)-	925.58	(15/2)-	E2	16.1 6	$ce(K)'_{(\gamma+ce)} = 0.00259 \ 4; \ ce(L)/(\gamma+ce) = 0.000338 \ 5; ce(M)/(\gamma+ce) = 6.75 \times 10^{-5} \ 10; \ ce(N+)/(\gamma+ce) = 1.469 \times 10^{-5} \ 21 ce(N)/(\gamma+ce) = 1.328 \times 10^{-5} \ 19; \ ce(O)/(\gamma+ce) = 1.411 \times 10^{-6} \ 20$			
								Mult.: $A_2 = +0.31$ 3, $A_4 = -0.11$ 4, $L(p) = +0.47$ 7; $\alpha(K) \exp[=0.0023$ 3.			
739.0 ^{&} 2 936.8 ^a 3	13.4 11	1177.48 2952.8?	$(11/2^{-})$ 23/2,25/2	438.57 2015.98	$(9/2)^{-}$ $(21/2)^{-}$		4.0 3	Mult.: $A_2 = +0.08 \ 12$, $A_4 = +0.06 \ 22$.			

[†] I(γ 's) are relative to I(212.2 γ)=100 at θ =125° and E(α)=27 MeV. [‡] From 1979Ha47: Intensity is normalized to 100 for 212.2 γ in ¹²¹Sb(d,2n γ).

[#] Deduced from $\alpha(K)\exp(K/L, \gamma(\theta))$ and linear polarization; angular distribution coefficients A₂, A₄ values, linear polarization L(p) values in 1979Ha47, and $\alpha(K)$ exp values are given in comments.

^(a) Center values and symmetric uncertainty value have been deduced by evaluators from upper and lower limits in ¹¹⁹Sn(α ,2n γ).

[&] Influenced by γ rays not listed with these data; but detail is not given in 1979Ha47.

^{*a*} Doublet; deduced from coincidence.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Multiply placed with undivided intensity.

^d Multiply placed with intensity suitably divided.

^e Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

119 Sn(α ,2n γ), 121 Sb(d,2n γ) 1979Ha47,1979Ha18

119 Sn(α ,2n γ), 121 Sb(d,2n γ) 1979Ha47,1979Ha18

¹²¹₅₂Te₆₉

119 Sn(α ,2n γ), 121 Sb(d,2n γ) 1979Ha47,1979Ha18

¹²¹₅₂Te₆₉