¹²¹In β^- decay (23.1 s) 1976Fo02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Ohya	NDS 111, 1619 (2010)	20-Jan-2009

Parent: ¹²¹In: E=0.0; $J^{\pi}=9/2^+$; $T_{1/2}=23.1 \text{ s} 6$; $Q(\beta^-)=3363 27$; $\%\beta^-$ decay=100.0 The decay scheme is that proposed by 1976Fo02 based on energy sums and $\gamma\gamma$ -coincidence data.

¹²¹Sn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	3/2+	27.03 h 4	
6.30 6	$11/2^{-}$	43.9 y 5	
60.34 2	$1/2^{+}$	-	
663.62 6	7/2-,9/2-		
869.23 5	$5/2^{+}$		
925.58 5	7/2+	0.25 ns 6	$T_{1/2}$: from (β)(925.57 γ)(t) (1976Fo02).

[†] E(levels) are based on a least-squares fit to the E(γ 's) of 1976Fo02.

[‡] From Adopted Levels.

 β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments			
$(2.44 \times 10^3 \ 3)$	925.58	100 10	4.33 5	av E β =984 13			

 † Absolute intensity per 100 decays.

 $\gamma(^{121}\mathrm{Sn})$

I γ normalization: From the assumption of 100% β^- feeding to 926 level. Feedings to 6.3 and 664 levels can be neglected. The intensity balance at 664 level suggests negligible direct β^- feeding, and log *ft*=6.5 for feeding of the 6.3 level gives I(β^-)=2.5%. This log *ft* is characteristic of 11/2⁻ to 9/2⁺ transitions in this mass region.

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{\ddagger}	$I_{(\gamma+ce)}^{\dagger}$	Comments
(6.29 8)		6.30	11/2-	0.0	3/2+	[M4]		8.7×10 ¹⁰ 10		$\alpha(L)=5.6\times10^{10} 6; \alpha(M)=2.6\times10^{10} 3; \alpha(N+)=4.7\times10^{9} 6$ $\alpha(N)=4.7\times10^{9} 6; \alpha(O)=1.38\times10^{7} 14$ E _y : from energy difference between 919.28y and 925.57y. Mult.: from decay scheme. I _(y+ce) : The isomeric 6.30 level is fed in 11.3% 6 of the decays of ¹²¹ In β^{-} decay (23.1 s). See ¹²¹ Sn IT decay and ¹²¹ Sn β^{-} decay (43.9 y) for radiation from this isomer
56.35 2	0.19 2	925.58	7/2+	869.23	5/2+	M1+E2	0.68 17	5.9 10		$\alpha(K)=4.5$ 7; $\alpha(L)=2.5$ 8; $\alpha(M)=0.51$ 16; $\alpha(N+)=0.09$ 3; $\alpha(O)=0.0031$ 7 Mult.: from α deduced intensity balance at 869 lavel in ¹²¹ Ln β^- decay (23.1 s)
60.34 2		60.34	1/2+	0.0	3/2+	M1		2.40	0.22 4	$ce(K)/(\gamma+ce)=0.609 \ 5; \ ce(L)/(\gamma+ce)=0.0782 \ 13; ce(M)/(\gamma+ce)=0.0154 \ 3; ce(N+)/(\gamma+ce)=0.00313 \ 6 ce(N)/(\gamma+ce)=0.00288 \ 5; \ ce(O)/(\gamma+ce)=0.000249 \ 5 $
261.96 3	7.9 5	925.58	7/2+	663.62	7/2 ⁻ ,9/2 ⁻	E1		0.01230		Mult.: from $\alpha(L)\exp=0.20$ S. $I_{(\gamma+ce)}$: expected from 808γ - 60γ cascade. $\alpha(K)=0.01069$ 15; $\alpha(L)=0.001301$ 19; $\alpha(M)=0.000253$ 4; $\alpha(N+)=5.12\times10^{-5}$ 8 $\alpha(N)=4.73\times10^{-5}$ 7; $\alpha(O)=3.88\times10^{-6}$ 6 Mult : from $\alpha(K)\exp=0.008$ 4
657.32 7	7.1 5	663.62	7/2 ⁻ ,9/2 ⁻	6.30	11/2-	M1,E2		0.0038 3		$\alpha = 0.0038 \ 3; \ \alpha(K) = 0.0033 \ 3; \ \alpha(L) = 0.000411 \ 21; \\ \alpha(M) = 8.1 \times 10^{-5} \ 4; \ \alpha(N+) = 1.64 \times 10^{-5} \ 10 \\ \alpha(N) = 1.51 \times 10^{-5} \ 8; \ \alpha(O) = 1.29 \times 10^{-6} \ 12 \\ Mult.: \ \alpha(K) exp = 0.009 \ 5 \ allows \ mult = M1, \ E2, \\ M2, \ or \ E3. \ The \ placement \ in \ in \ the \ decay \\ scheme \ requires \ DPI = no, \ so \ mult = M1, \ E2.$
808.7 2 869.31 <i>10</i> 919.28 7	0.22 <i>4</i> 1.1 <i>1</i> 4.2 <i>3</i>	869.23 869.23 925.58	5/2 ⁺ 5/2 ⁺ 7/2 ⁺	60.34 0.0 6.30	1/2 ⁺ 3/2 ⁺ 11/2 ⁻					1

From ENSDF

 $^{121}_{50}\mathrm{Sn}_{71}\text{-}2$

					12	¹ In β^- decay (2)	3.1 s) 1976Fo02 (continued)
$\gamma(^{121}\text{Sn})$ (continued)							
Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α^{\ddagger}	Comments
925.57 7	87 6	925.58	7/2+	0.0 3/2+	(E2)	0.001531 22	α =0.001531 22; α (K)=0.001328 19; α (L)=0.0001644 23; α (M)=3.21×10 ⁻⁵ 5; α (N+)=6.54×10 ⁻⁶ α (N)=6.03×10 ⁻⁶ 9; α (O)=5.11×10 ⁻⁷ 8 Mult.: from α (K)exp=0.0012 4 and decay scheme.
^x 1092.8 4	0.34 3						

[†] For absolute intensity per 100 decays, multiply by 1.00 7. [‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies,

assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

$\frac{121}{10} \ln \beta^{-}$ decay (23.1 s) 1976Fo02

 $^{121}_{50}$ Sn₇₁