¹²¹Te ε decay (164.2 d) 1975Me23

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Ohya	NDS 111, 1619 (2010)	20-Jan-2009

Parent: ¹²¹Te: E=293.991 22; $J^{\pi}=11/2^{-}$; $T_{1/2}=164.2 \text{ d } 8$; $Q(\varepsilon)=1054 26$; $\%\varepsilon+\%\beta^{+}$ decay=11.4 11

¹²¹Te- $\%\varepsilon + \%\beta^+$ decay: from I(γ +ce 212 γ)/ Σ I(γ +ce to g.s.). Note that in an equilibrium 19-d, 154-d ¹²¹Te source, 11% of the intensity of the 37 γ is due to the ¹²¹Te ε decay (19.17 d).

1975Me23: Compton suppression spectrometer semi γ .

Others: scin γ , $\gamma\gamma$, magnetic spectrograph ce (1964Ch08); semi γ (1971Au03).

See also 121 Te IT decay (164.2 d).

¹²¹Sb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	5/2+	stable	
37.138 10	7/2+	3.46 ns 3	$T_{1/2}$: from Adopted Levels.
946.991 <i>14</i>	$9/2^{+}$		-,
1024.0 3	$7/2^{+}$		
1035.433 15	$9/2^{+}$		
1139.292 20	$9/2^+, 11/2^+$		
1144.66 4	$9/2^{+}$		

[†] E(levels) are based on a least-squares fit to $E\gamma$'s from 1975Me23.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay) E(level) $I\beta^{+\dagger}$ $I\epsilon^{\dagger}$ Log ft Comments	
$(2.0 \times 10^{2} 3) 1144.66 \qquad 0.00148 22 10.97 16 \varepsilon K=0.823 7; \ \varepsilon L=0.139 6; \ \varepsilon M+=0.0375 17$	
$(2.1 \times 10^2 3)$ 1139.292 2.54 3 7.76 15 ε K=0.824 7; ε L=0.138 5; ε M+=0.0372 16	
$(3.1 \times 10^2 \ 3)$ 1035.433 0.078 8 9.66 11 ε K=0.8382 24; ε L=0.1279 19; ε M+=0.0340 6	
$(3.2 \times 10^2 \ 3)$ 1024.0 0.00008 4 12.2 ^{1u} 3 ε K=0.791 10; ε L=0.164 8; ε M+=0.0453 24	
$(4.0 \times 10^2 3)$ 946.991 0.079 8 9.89 9 ε K=0.8437 14; ε L=0.1236 11; ε M+=0.0327 4	
(1.31×10 ³ 3) 37.138 0.0011 6 8.7 10 9.72 ^{1u} 8 av E β =150 13; ε K=0.8497 3; ε L=0.11892 21; ε M+=0.031	25 7

I(537 γ)=1000 and theoretical I(β^+)/I(ε) (1975Me23).

[†] Absolute intensity per 100 decays.

$\gamma(^{121}\text{Sb})$

I γ normalization: from $\Sigma I(\gamma + ce \text{ to } g.s.) = 11.4 \ 11$.

E_{γ}^{\dagger}	Ι _γ ‡#	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α@	Comments
37.138 10	11.8 12	37.138	7/2+	0.0 5/2+	M1	10.87	$\alpha(K)=9.35 \ 14; \ \alpha(L)=1.226 \ 18; \\ \alpha(M)=0.243 \ 4; \ \alpha(N+)=0.0514 \ 8 \\ \alpha(N)=0.0468 \ 7; \ \alpha(O)=0.00459 \ 7 \\ Mult.: \ from \ \alpha(K)exp=9.32 \ 37 \\ (1968Sn01).$
103.85 8	0.011 4	1139.292	9/2+,11/2+	1035.433 9/2+	[M1,E2]	1.0 5	$\alpha(K)=0.8 \ 3; \ \alpha(L)=0.19 \ 14; \ \alpha(M)=0.04$

¹²¹Te ε decay (164.2 d) 1975Me23 (continued)

$\gamma(^{121}\text{Sb})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger \#}$	E _i (level)	J_i^π	E_f	J_f^π	Comments
909.847 18 946.989 18 998.291 11 1024.00 25 1035.40 10 1102.149 18 1107.60 18 1144.65 4	0.881 <i>19</i> 0.103 <i>3</i> 0.997 <i>22</i> 0.0010 <i>5</i> 0.007 <i>3</i> 31.8 <i>7</i> 0.005 <i>2</i> 0.0135 <i>6</i>	946.991 946.991 1035.433 1024.0 1035.433 1139.292 1144.66 1144.66	9/2+ 9/2+ 9/2+ 7/2+ 9/2+ 9/2+,11/2+ 9/2+ 9/2+ 9/2+	37.138 0.0 37.138 0.0 0.0 37.138 37.138 0.0	7/2+ 5/2+ 7/2+ 5/2+ 5/2+ 7/2+ 7/2+ 5/2+	3; α (N+)=0.008 6 α (N)=0.007 5; α (O)=0.0006 4 α : for δ =1.0; uncertainty chosen to overlap M1,E2 theory values.

[†] From 1975Me23. The evaluators have added 10 eV in quadrature to the quoted uncertainties to allow for uncertainties in calibration.

[‡] From 1975Me23. The evaluators have added 2% in quadrature to the quoted uncertainties to allow for uncertainties in efficiency calibration.

[#] For absolute intensity per 100 decays, multiply by 0.080 8.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹²¹Te ε decay (164.2 d) 1975Me23

Decay Scheme

 $^{121}_{51}{\rm Sb}_{70}$