¹²¹Sb IT decay (179 μs) 2008Jo03,2008Ko03

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Ohya	NDS 111,1619 (2010)	20-Jan-2009

Parent: ¹²¹Sb: E=2721.5+x; J^{π} =(25/2); $T_{1/2}$ =179 μ s 6; %IT decay=100

 $^{121}\mbox{Sb-T}_{1/2}\mbox{:}$ from Adopted Levels, gammas.

2008Jo03: The 179- μ s isomer of ¹²³Sb produced in reaction ²⁷Al(¹⁷⁸Hf,X), E=1150 MeV, Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$,

GAMMASPHERE array of 101 Compton-suppressed HPGe detectors. Pulsed beam with short pulses of ≈ 0.5 ns width and separated by 82.5 ns.

2008Ko03: ¹²⁰S(n)(¹⁰B,X γ), E=55 MeV, Measured E γ , I γ , $\gamma\gamma$, OSIRIS-II array of 12 Compton-suppression HPGe detectors, 48 element BGO multiplicity filter.

¹²¹Sb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 37.13 2 946.97 [@] 22	5/2+# 7/2+# 9/2+	3.46 ns <i>3</i>	T _{1/2} : from Adopted Levels.
1035.6 3	9/2 ^{+#}		
1139.2 <i>3</i>	9/2 ⁺ ,11/2 ⁺ #		
1144.60 19	9/2+ [#]		
1322.0 <i>3</i>	$(11/2)^{+\#}$		
1426.90 ^{&} 24	$(11/2)^{-}$		
1649.8 [@] 3	$(13/2^+)$		
1997.9 [@] 3	$(15/2^+)$		
2057.1 3	$(13/2^+)$		
2142.2 ^{&} 3	$(15/2)^{-}$		
2150.7? 6	(17/2)		
2356.8 ^{<i>a</i>} 3	$(17/2^+)$		
2434.5 ^{&} 4	$(19/2)^{-}$	8.5 ns 5	$T_{1/2}$: from $\gamma\gamma(t)$ (2008Jo03).
2551.6 4	$(21/2^-, 19/2^-)$		
$2680.0^{\textcircled{0}}4$	$(19/2^+)$		
2721.5 4	$(21/2^+)$		
2721.5+x	(25/2)	179 μs 6	E(level): x<60 keV for E2, <80 keV for M2 based on typical Weisskopf estimates. $T_{1/2}$: from Adopted Levels.

[†] From least-squares fit to $E\gamma's$.

[‡] Based on $\gamma\gamma(\theta)$, multipolarities and analogy with band structures in odd Sb isotopes, unless where noted otherwise.

[#] From Adopted Levels.

^(a) Band(A): Band based on $9/2^+$.

[&] Band(B): Band based on $11/2^{-}$.

$\gamma(^{121}\text{Sb})$

 $I\gamma$ from 2008Jo03: Intensity is normalized to 100 for 286.8 γ in single-particle structure. Normalized ratio of intensities in the rotational band to those in the single-particle structure is 0.7 *1*.

 $\alpha(exp)$ deduced by 2008Jo03 from intensity balances assuming M1 for 323 γ , 348 γ and 998 γ and E2 for 682 γ and 292 γ .

 \mathbf{b}

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	$\delta^{\#}$	$\alpha^{@}$	Comments
x 37.13 41.1 5	5.0 9	2721.5+x 37.13 2721.5	(25/2) 7/2 ⁺ (21/2 ⁺)	2721.5 0.0 2680.0	(21/2 ⁺) 5/2 ⁺ (19/2 ⁺)	M1+E2	0.50 15	15 3	E _y : x<60 keV for E2, <80 keV for M2 based on typical Weisskopf estimates. E _y : Rounded-off value from adopted gammas. $\alpha(K)=8.1$ 7; $\alpha(L)=5.3$ 22; $\alpha(M)=1.1$ 5; $\alpha(M)=0.21$ 0
77 9 3	9410	2434 5	(19/2) ⁻	2356.8	$(17/2^+)$	F1		0 381 7	$\alpha(N+)=0.21$ 9 $\alpha(N)=0.20$ 8; $\alpha(O)=0.014$ 6 $\alpha(\exp)=15$ 3. δ : from $\alpha(\exp)=15$ 3. $\alpha(K)=0.328$ 6: $\alpha(L)=0.0429$ 8: $\alpha(M)=0.00843$ 16:
11.9 5	J. T 10	2434.3	(1)/2)	2550.0	(17/2)	LI		0.3017	$\alpha(N=0.526, \alpha(L)=0.042)$ 6, $\alpha(N=0.00045, 10)$, $\alpha(N=0.00173, 3)$ $\alpha(N)=0.00159, 3; \alpha(O)=0.000145, 3)$ $\alpha(\exp)=0.2, 4.$
85.3 <i>3</i>		2142.2	(15/2)-	2057.1	(13/2+)	E1		0.295	ce(K)/(γ +ce)=0.197 3; ce(L)/(γ +ce)=0.0255 5; ce(M)/(γ +ce)=0.00501 9; ce(N+)/(γ +ce)=0.001032 19 ce(N)/(γ +ce)=0.000946 17; ce(O)/(γ +ce)=8.69×10 ⁻⁵ 16 I γ =18 2. α (exp) < 0.4.
117.4 3		2551.6	(21/2 ⁻ ,19/2 ⁻)	2434.5	(19/2)-	M1(+E2)	<0.9	0.51 <i>13</i>	ce(K)/(γ +ce)=0.28 5; ce(L)/(γ +ce)=0.051 22; ce(M)/(γ +ce)=0.010 5; ce(N+)/(γ +ce)=0.0021 9 ce(N)/(γ +ce)=0.0019 9; ce(O)/(γ +ce)=0.00017 6 I γ =2.5 3. α (exp)=0.47 17. δ : from α (exp)=0.47 17.
144.3 5 170.3 3		2142.2 2721.5	$(15/2)^-$ $(21/2^+)$	1997.9 2551.6	$(15/2^+)$ $(21/2^-, 19/2^-)$	D			$I\gamma = 1 LT.$ $I\gamma = 4.0 5.$ $\alpha(exp) = 0.08 12.$
243 282.2 <i>3</i>		2680.0 1426.90	(19/2 ⁺) (11/2) ⁻	2434.5 1144.60	(19/2) ⁻ 9/2 ⁺	E1(+M2)	+0.01 +19-14	0.011 6	E _y : from 2008Ko03. ce(K)/(γ +ce)=0.009 5; ce(L)/(γ +ce)=0.0011 8; ce(M)/(γ +ce)=0.00022 15; ce(N+)/(γ +ce)=5.E-5 4 ce(N)/(γ +ce)=4.E-5 3; ce(O)/(γ +ce)=4.E-6 3 I γ =23 3.
286.8 <i>3</i>		2721.5	$(21/2^+)$	2434.5	(19/2)-	E1(+M2)	+0.02 3	0.0102 4	$(262\gamma)(1145\gamma)(\theta)$: A ₂ =-0.08 5, A ₄ =-0.01 7. ce(K)/(γ +ce)=0.0088 3; ce(L)/(γ +ce)=0.00108 5;

From ENSDF

				¹²¹ Sb I'	Τ decay (179 με	2008Jo03,2008K	003 (contin	nued)	
$\gamma(^{121}\text{Sb})$ (continued)									
E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	${f J}^\pi_i$	\mathbf{E}_{f}	J_f^{π} Mu	lt.	$\delta^{\#}$	α [@]	Comments
287.8 <i>4</i> 292 3 3		1426.90 2434 5	$(11/2)^{-}$ $(19/2)^{-}$	1139.2 9/2 ⁺ 2142 2 (15/	- <u></u>	M3)	+0.02 +9-7	0.041.7	$\frac{\text{ce}(M)/(\gamma+\text{ce})=0.000211 \ 9; \ \text{ce}(N+)/(\gamma+\text{ce})=4.45\times10^{-5}}{18}$ $\frac{\text{ce}(N)/(\gamma+\text{ce})=4.05\times10^{-5} \ 16; \ \text{ce}(O)/(\gamma+\text{ce})=3.93\times10^{-6}}{16}$ $\frac{16}{17}=100.$ $I_{\gamma}: \ 13.3 \ 14 \ \text{relative to } 100 \ \text{for } 909.8\gamma.$ $\delta: \ \text{weighted average of } +0.03 \ 14, \ -0.04 \ 6 \ \text{and } +0.05 \ 4 \ \text{from } \gamma\gamma(\theta) \ \text{in } 2008J003.$ $\delta=+0.03 \ 14 \ \text{from } (287\gamma)(1145\gamma)(\theta): \ A_{2}=-0.11 \ 5, \ A_{4}=-0.04 \ 7.$ $\delta=-0.04 \ 6 \ \text{from } (287\gamma)(715\gamma)(\theta): \ A_{2}=-0.048 \ 19, \ A_{4}=+0.01 \ 3.$ $\delta=+0.05 \ 4 \ \text{from } (287\gamma)(292\gamma)(\theta): \ A_{2}=-0.099 \ 13, \ A_{4}=+0.03 \ 2.$ $\alpha(\text{exp})=0.02 \ 5.$ $I\gamma=6.9 \ 9.$ $\text{ce}(K)/(\gamma+\text{ce})=0.0052 \ 10;$
272.5 5		2434.3	(19/2)	2142.2 (13).	2) 12(+1	WI 3)	+0.02 +9-7	0.041 /	$ce(M)/(\gamma+ce)=0.052 \ 3, \ ce(L)/(\gamma+ce)=0.0052 \ 10, \\ce(M)/(\gamma+ce)=0.00104 \ 20; \ ce(N+)/(\gamma+ce)=0.00021 \ 4 \\ce(N)/(\gamma+ce)=0.00020 \ 4; \ ce(O)/(\gamma+ce)=1.7\times10^{-5} \ 4 \\I\gamma=98 \ 9. \\I_{\gamma}: \ 3.9 \ 5 \ relative \ to \ 100 \ for \ 909.8\gamma. \\(202)(715x)(0): \ A_{\gamma}=0.007 \ 10, \ A_{\gamma}=0.05 \ 3 \\ce(M)/(\gamma+ce)=0.0052 \ 4 \\ce(M)/(\gamma+ce)=0.00021 \ 4 \\ce(M)/(\gamma+ce)=0$
323.1 <i>3</i> 327.8 <i>3</i> 348.0 <i>3</i> 359.0 <i>3</i> 375.0 <i>3</i> 391.2 <i>3</i> 400 9 ^{&} 4	53 5 70 7 84 9 58 6 98 10	2680.0 1649.8 1997.9 2356.8 1322.0 1426.90 2551.6	$(19/2^+) (13/2^+) (15/2^+) (17/2^+) (11/2)^+ (11/2)^- (21/2^- 19/2^-)$	2356.8 (17/2 1322.0 (11/2 1649.8 (13/2 1997.9 (15/2) 946.97 9/2+ 1035.6 9/2+ 2150.72 (17/2)	2 ⁺) 2) ⁺ 2 ⁺) 2 ⁺)				$I_{\gamma}=43.5.$ $I_{\gamma}=5.8.7$
400.9 4 409.3 6 479.4 6 492.4 4		2551.6 1426.90 2142.2	$(21/2^{-},19/2^{-})$ $(21/2^{-},19/2^{-})$ $(11/2)^{-}$ $(15/2)^{-}$	2142.2 (15/2 946.97 9/2 ⁺ 1649.8 (13/2	2) ⁻ 2) ⁻ 2 ⁺)				$I\gamma = 3.6$ 7. $I\gamma = 1.7$ 4. $I\gamma = 1$ <i>LT</i> . $I\gamma = 1.4$ 4. Let 3.0 4 relative to 100 for 909 8y
675.8 <i>3</i> 682.0 <i>3</i> 702.9 <i>3</i> 707.1 <i>3</i>	23 <i>3</i> 20 <i>2</i> 20 <i>2</i> 21 <i>2</i>	1997.9 2680.0 1649.8 2356.8	$(15/2^+) (19/2^+) (13/2^+) (17/2^+)$	1322.0 (11/ 1997.9 (15/ 946.97 9/2 ⁺ 1649.8 (13/	2)+ 2+) 2+)				ry. 5.0 / felalite to 100 for 505.07.
715.2 3		2142.2	(15/2) ⁻	1426.90 (11/2	2) ⁻ E2(+1	M3)	-0.17 +19-8		$\begin{array}{l} \text{ce(K)}/(\gamma + \text{ce}) = 0.0031 \ 6; \ \text{ce(L)}/(\gamma + \text{ce}) = 0.00041 \ 8; \\ \text{ce(M)}/(\gamma + \text{ce}) = 8.0 \times 10^{-5} \ 16; \ \text{ce(N+)}/(\gamma + \text{ce}) = 1.7 \times 10^{-5} \\ 4 \end{array}$

ω

 $^{121}_{51}{
m Sb}_{70}$ -3

L

				12	¹ Sb IT decay	y (179 μs) 2008Jo03,2008Ko03 (continued)
						$\gamma(^{121}\text{Sb})$ (continued)
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Comments
909.8 <i>3</i> 912.7 <i>4</i> 917.8 <i>4</i> 947.0 <i>4</i> 998.3 <i>4</i>	100 11.7 <i>14</i>	946.97 2057.1 2057.1 946.97 1035.6	9/2 ⁺ (13/2 ⁺) (13/2 ⁺) 9/2 ⁺ 9/2 ⁺	37.13 1144.60 1139.2 0.0 37.13	7/2+ 9/2+ 9/2+,11/2+ 5/2+ 7/2+	$\begin{array}{l} ce(N)/(\gamma+ce)=1.5\times10^{-5} \ 3; \ ce(O)/(\gamma+ce)=1.5\times10^{-6} \ 3\\ I\gamma=72 \ 7.\\ (715\gamma)(391\gamma)(\theta): \ A_2=-0.12 \ 3, \ A_4=+0.02 \ 4.\\ I\gamma=3.7 \ 5.\\ I\gamma=9.3 \ 10.\\ I\gamma=51 \ 5.\\ \end{array}$
1021.6 5 1102.2 5 1107.5 3 1144.6 3		2057.1 1139.2 1144.60 1144.60	(13/2 ⁺) 9/2 ⁺ ,11/2 ⁺ 9/2 ⁺ 9/2 ⁺	1035.6 37.13 37.13 0.0	9/2 ⁺ 7/2 ⁺ 7/2 ⁺ 5/2 ⁺	$I\gamma = 5.2$ 7. $I\gamma = 15.9$ 17. $I\gamma = 10.8$ 12. $I\gamma = 15.3$ 17.

 † From 2008Jo03, except where noted otherwise.

[‡] From 2008Jo03: Intensity is normalized to 100 for 909.8 γ in the rotational band. Normalized ratio of intensities in the rotational band to those in the single-particle structure is 0.7 *1*. [#] From $\gamma\gamma(\theta)$ of 2008Jo03, except where noted otherwise.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain.

4

 $^{121}_{51}{\rm Sb}_{70}$

¹²¹Sb IT decay (179 μs) 2008Jo03,2008Ko03

