120 Sn(7 Li, α 2n γ) 2009Wa02,1985Pi02

		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	S. Ohya	NDS 111, 1619 (2010)	20-Jan-2009	

Includes Yb,Lu,W,Os(¹³⁶Xe,X) E=6.0-6.2 MeV/nucleon.

2009WA02: Two experiments performed. First experiment: ¹²⁰Sn(⁷Li,α2n) E=58 MeV, measured Eγ, Iγ, γγ, γγ(q), ce using CAESAR array composed of six Ge detectors with Compton suppression and two LEPS detectors. Conversion electrons measured using a Si(Li) detector. Second experiment: ¹³⁶Xe beam incident on targets of Yb,Lu,W and Os, E=6.0-6.2 MeV/nucleon, measured Eγ, Iγ, γγ-coin, γγ(q) using GAMMASPHERE array of 100 HPGe detectors with Compton-suppression: Isomer lifetimes were measured using decay curve analyses and generalized centroid-shift method.
1985PI02: E(⁷Li)=27 MeV; measured Eγ, γγ, γ(θ).

¹²¹Sb Levels

E(level) [‡]	J^{π}	T _{1/2} #	Comments
0	$5/2^{+}$		
37.1 2	$7/2^+$		
947.0 2	9/2+		
1035.4 <i>3</i>	$9/2^+$		
1139.1 <i>3</i>	$11/2^+$		J^{π} : 9/2 ⁺ ,11/2 ⁺ in Adopted Levels.
1144.5 2	$9/2^{+}$		
1322.1 <i>3</i>	$11/2^+$		J^{π} : (11/2 ⁺) in Adopted Levels.
1426.7 2	$11/2^{-}$		J^{π} : (11/2) ⁻ in Adopted Levels.
1649.8 <i>3</i>	$13/2^{+}$		J^{π} : (13/2 ⁺) in Adopted Levels.
1998.0 <i>3</i>	$15/2^{+}$		J^{π} : (15/2 ⁺) in Adopted Levels.
2057.0 3	$13/2^{+}$		J^{π} : (13/2 ⁺) in Adopted Levels.
2139.0 4	$15/2^{+}$		J^{π} : 13/2 ⁺ , 15/2 ⁺ in Adopted Levels.
2142.1 3	$15/2^{-}$	1.8 ns 2	J^{π} : (15/2) ⁻ in Adopted Levels.
			$T_{1/2}$: centroid-shift method.
2356.8 <i>3</i>	$17/2^{+}$		J^{π} : (17/2 ⁺) in Adopted Levels.
2434.3 4	$19/2^{-}$	7.7 ns 2	J^{π} : (19/2) ⁻ in Adopted Levels.
			$T_{1/2}$: from $\gamma\gamma(t)$.
2543.1 4	17/2		
2551.1 4	$(19/2^{-})$		J^{π} : (21/2,19/2) ⁻ in Adopted Levels.
2680.0 <i>3</i>	19/2+		J^{π} : (19/2 ⁺) in Adopted Levels.
2720.9 4	$21/2^{+}$	1.9 ns <i>3</i>	J^{π} : (21/2) ⁺ in Adopted Levels.
			$T_{1/2}$: centroid-shift method.
2746 15	$(25/2^+)$	179 µs 6	$T_{1/2}$: weighted average of decay curves for 169.8, 286.6 and 323.2 γ rays.
			E(level): from E γ =10-40 keV (if E2) to 2720.9 level, based on Weisskopf estimate (2009Wa02).
			J^{π} : (25/2) in Adopted Levels.
2764.8 4	$19/2^{+}$		J^{π} : (19/2 ⁺) in Adopted Levels.
3183.4 5	$(21/2^+)$		J^{π} : (21/2,23/2) in Adopted Levels.

[†] Based on $\gamma\gamma(\theta)$, DCO ratios and $\alpha(K)$ exp, unless noted otherwise.

[±] From least-squares fit to $E\gamma$'s. The evaluator assumed an uncertainty of 0.3 keV for $E\gamma$'s.

[#] From 2009Wa02.

¹²¹₅₁Sb₇₀-2

				120 Sn(⁷ Li, α	2n γ) 200	9Wa02,1985Pi0			
$\underline{\gamma(^{121}Sb)}$									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_f J_f^{\pi}$	Mult.	δ	α [#]	Comments	
37.1 947.0	7/2+ 9/2+	37.1 909.9		$\begin{array}{ccc} 0 & 5/2^+ \\ 37.1 & 7/2^+ \end{array}$	D			Mult.: from negative A ₂ in $\gamma(\theta)$ (1985PI02).	
1035.4 1139.1 1144.5	9/2 ⁺ 11/2 ⁺ 9/2 ⁺	947.0 998.3 1102.0 1107.4 1144.5		$\begin{array}{cccc} 0 & 5/2^{+} \\ 37.1 & 7/2^{+} \\ 37.1 & 7/2^{+} \\ 37.1 & 7/2^{+} \\ 0 & 5/2^{+} \end{array}$					
1322.1	$11/2^+$	375.1		947.0 9/2+	D			Mult.: from negative A ₂ in $\gamma(\theta)$ (1985PI02)	
1426.7	11/2-	282.2 287.6 391.3		$\begin{array}{rrrr} 1144.5 & 9/2^+ \\ 1139.1 & 11/2^+ \\ 1035.4 & 9/2^+ \end{array}$	[E1]		0.00456 7	$\alpha = 0.00456 \ 7; \ \alpha(K) = 0.00396 \ 6;$ $\alpha(L) = 0.000481 \ 7;$	
								$\alpha(M)=9.46\times10^{-5} I4; \alpha(M)=9.46\times10^{-5} I4; \alpha(N+)=1.99\times10^{-5} 3 \alpha(N)=1.82\times10^{-5} 3; \alpha(O)=1.775\times10^{-6} 25$	
		1389.6		37.1 7/2+	[M2]		0.00183 3	$\alpha = 0.00183 \ 3; \ \alpha(K) = 0.001573 \ 22; \alpha(L) = 0.000194 \ 3; \alpha(M) = 3.82 \times 10^{-5} \ 6; \alpha(N+) = 2.13 \times 10^{-5} \ 3 \alpha(N) = 7.39 \times 10^{-6} \ 11; \alpha(O) = 7.37 \times 10^{-7} \ 11; (D) = 1.011 \ 10^{-5} \ 10$	
1649.8	13/2+	327.7		1322.1 11/2+	D			$\alpha(\text{IPF})=1.314\times10^{-5} I9$ Mult.: from negative A ₂ in $\gamma(\theta)$ (1985PI02).	
1998.0	15/2+	702.8 348.2		947.0 9/2 ⁺ 1649.8 13/2 ⁺	D			Mult.: from negative A_2 in $\gamma(\theta)$	
2057.0	13/2+	675.9 912.5 917.9		$\begin{array}{cccccccccccccccccccccccccccccccccccc$				(1985P102).	
2139.0	15/2+	999.9		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q			Mult.: from DCO=0.95 8 gate on ΔI =2, quadrupole.	
2142.1	15/2-	85.1	15.4 11	2057.0 13/2+	[E1]		0.297	$\begin{array}{l} \alpha(\mathrm{K}) = 0.256 \; 4; \; \alpha(\mathrm{L}) = 0.0333 \; 5; \\ \alpha(\mathrm{M}) = 0.00653 \; 10; \\ \alpha(\mathrm{N}+) = 0.001346 \; 19 \\ \alpha(\mathrm{N}) = 0.001233 \; 18; \; \alpha(\mathrm{O}) = 0.0001133 \\ 16 \end{array}$	
		144.1	2.5 6	1998.0 15/2+	[E1]		0.0673	$\alpha(K)=0.0583 \ 9; \ \alpha(L)=0.00731 \ 11;$ $\alpha(M)=0.001436 \ 21;$ $\alpha(N+)=0.000299 \ 5$ $\alpha(N)=0.000273 \ 4; \ \alpha(O)=2.59\times10^{-5}$	
		492.3	3.2 5	1649.8 13/2+	[E1]		0.00261 4	4 α =0.00261 4; α (K)=0.00227 4; α (L)=0.000274 4; α (M)=5.38×10 ⁻⁵ 8; α (N+)=1.138×10 ⁻⁵ 16 α (N)=1.036×10 ⁻⁵ 15; α (O)=1.017×10 ⁻⁶ 15	
		715.4	79 4	1426.7 11/2-	E2+M3	+0.10 +8-7	0.0032 5	α =0.0032 5; α (K)=0.0028 4; α (L)=0.00036 6; α (M)=7.1×10 ⁻⁵	

Continued on next page (footnotes at end of table)

From ENSDF

 $^{121}_{51}$ Sb₇₀-3

	120 Sn $(^{7}$ Li, α 2n γ) 2009Wa02,1985Pi02 (02 (continued	1)
						$\gamma(^{121}\text{Sb})$ (c	continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	$\alpha^{\#}$	Comments
									<i>12</i> ; α (N+)=1.50×10 ⁻⁵ 24 α (N)=1.37×10 ⁻⁵ 22; α (O)=1.32×10 ⁻⁶ 22 δ : from (715 γ)(391 γ assumed E1)(θ): A ₂ =-0.107 21, A ₄ =+0.04 β .
2356.8	$17/2^{+}$	358.8 707.0		1998.0 1649 8	$\frac{15}{2^+}$ $\frac{13}{2^+}$	(D)			Mult.: from $\gamma(\theta)$ (1985PI02).
2434.3	19/2-	77.5	4.5 5	2356.8	17/2+	[E1]		0.387	$\begin{array}{l} \alpha({\rm K}) = 0.333 \ 5; \ \alpha({\rm L}) = 0.0436 \ 7; \\ \alpha({\rm M}) = 0.00855 \ 12; \\ \alpha({\rm N}+) = 0.001760 \ 25 \\ \alpha({\rm N}) = 0.001613 \ 23; \ \alpha({\rm O}) = 0.0001472 \\ 21 \end{array}$
		292.2	96 6	2142.1	15/2-	E2(+M3)	-0.03 6	0.041 4	$\alpha(K)=0.034 4; \alpha(L)=0.0054 6;$ $\alpha(M)=0.00109 13;$ $\alpha(N+)=0.00022 3$ $\alpha(N)=0.000206 24; \alpha(O)=1.83\times10^{-5}$ 23 Mult., δ : from (292 γ)(715 γ assumed E2)(θ): A ₂ =+0.091 27, A ₄ =+0.05 4; $\alpha(K)=0.034 2$, (2009)W(02)
2543.1	17/2	401.0		2142.1	15/2-	D			4. $u(R)exp=0.054 2 (2009 wa02)$. Mult.: from DCO=1.6 2 gate on
2551.1	(19/2 ⁻)	116.8		2434.3	19/2-	M1(+E2)	<0.2		$\Delta J=2$, quadrupole. $\alpha(K)=0.3455; \alpha(L)=0.04427;$ $\alpha(M)=0.0087513;$ $\alpha(N+)=0.001863$ $\alpha(N)=0.00168924; \alpha(O)=0.000166424$ Mult., δ : Evaluator deduced from $\alpha(\exp)=0.375(2009Wa02).$ Authors' value is M1
2680.0	19/2+	323.2		2356.8	$17/2^+$				Autors value is with
		541.0 682.0		2139.0 1998.0	$15/2^+$ $15/2^+$				
2720.9	21/2+	40.9	11.0 24	2680.0	19/2+	[M1]		8.21	$\alpha(K)=7.06\ 10;\ \alpha(L)=0.922\ 13;\ \alpha(M)=0.183\ 3;\ \alpha(N+)=0.0387\ 6$
		169.8	9.5 <i>5</i>	2551.1	(19/2 ⁻)	E1		0.0425	$\begin{aligned} \alpha(N) = 0.0368 & 6; & \alpha(L) = 0.00459 & 7; \\ \alpha(M) = 0.000901 & 13; \\ \alpha(N+) = 0.000188 & 3 \\ \alpha(N) = 0.0001719 & 24; \\ \alpha(O) = 1.637 \times 10^{-5} & 23 \\ \text{Mult.: from } \alpha(K) \exp[=0.032 & 5 \\ (000W-02) & 0.0018 & 10^{-5} & 25 \\ (000W-02) & 0.0018 & 10^{-5} $
		286.6	79.5 23	2434.3	19/2-	E1+M2	-0.06 4	0.0107 <i>10</i>	$\alpha(K)=0.0093 \ 8; \ \alpha(L)=0.00115 \ 12; \alpha(M)=0.000226 \ 24; \alpha(N+)=4.8\times10^{-5} \ 5 \alpha(N)=4.3\times10^{-5} \ 5; \ \alpha(O)=4.2\times10^{-6} \ 5 Mult.,\delta: from (287\gamma)(292\gamma assumed E2)(\theta)+(287\gamma)(715\gamma assumed E2)(\theta): \ A_2=-0.108 \ 24, \ A_4=+0.04 \ 4; \ \alpha(K)exp=0.013 \ 2 \ (2009Wa02).$

From ENSDF

120 Sn(7 Li, α 2n γ) 2009Wa02,1985Pi02 (continued)

$\gamma(^{121}\text{Sb})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	α #	Comments
2746	$(25/2^+)$	(<40)	100	2720.9	$21/2^{+}$	[E2]	>45.9	
2764.8	$19/2^{+}$	408.0		2356.8	$17/2^{+}$	D		Mult.: from DCO=0.93 6 gate on $\Delta J=1$, dipole.
		766.8		1998.0	$15/2^{+}$			
3183.4	$(21/2^+)$	418.6		2764.8	$19/2^{+}$			

[†] From 2009Wa02. [‡] Photon branching from each level (2009Wa02).

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{121}_{51}{\rm Sb}_{70}$