Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh	ENSDF	20-Jul-2015	

 $Q(\beta^{-})=11380 SY; S(n)=3110 SY; S(p)=16820 SY; Q(\alpha)=-11300 SY$ 2012Wa38

Estimated uncertainties (2012Wa38): 500 for Q(β^-), 570 for S(n), 640 for S(p) and Q(α).

 $S(2n)=8630\ 500,\ Q(\beta^{-}n)=5700\ 450.\ S(2p)=32030\ (1997Mo25,theory).$

2010Oh02: ¹²¹Ru nuclide identified in Be(²³⁸U,F) and Pb(²³⁸U,F) reactions with a ²³⁸U⁸⁶⁺ beam energy of 345 MeV/nucleon produced by the cascade operation of the RBIF accelerator complex of the linear accelerator RILAC and four cyclotrons RRC, fRC, IRC and SRC. Identification of ¹²¹Ru nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments using BigRIPS fragment separator. Experiments performed at RIKEN facility. Based on A/Q spectrum and Z versus A/Q plot, 170 counts were assigned to ¹²¹Ru isotope. (Q=charge state).

2015Lo04: ¹²¹Ru nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10^{10} ions/s. Identification of ¹²¹Ru was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹²¹Ru isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique as described in 2014Xu07. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations. Additional information 1.

¹²¹Ru Levels

E(level)	T _{1/2}	Comments	
0	29 ms 2	$\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?$	
		Theoretical $T_{1/2}$ =88.3 ms, $\%\beta^{-}n$ =7.1, $\%\beta^{-}2n$ =0.0 (2003Mo09).	
		E(level): measured half-life is assumed to correspond to the ground state of ¹²¹ Ru.	
		Measured σ =143 pb (2010Oh02), systematic uncertainty≈40%. Probability of misidentification of ¹²¹ Ru isotope<0.001% (2010Oh02).	
		J^{π} : $3/2^{-1}$ in theoretical calculations (1997Mo25).	
		$T_{1/2}$: measured by 2015Lo04 from (implanted ions) β correlated curves in time and position using maximum	

likelihood method. See 2015Lo04 for comparison of their experimental value with theoretical values.