Adopted Levels

Type Author Citation Literature Cutoff Date

Full Evaluation S. Ohya NDS 111,1619 (2010) 20-Jan-2009

 $S(p) = -890 \ 10$; $Q(\alpha) = 2.5 \times 10^3 \ syst$ 2012Wa38

Note: Current evaluation has used the following Q record -837 502508 syst.

S(p) from 2005Ro19, 2009AuZZ give -840~50, Q(α) from 2009AuZZ, Δ Q(α)=807 (syst,2009AuZZ), Q(ϵ p)=8820 862 (sys,2009AuZZ).

Identification: 2005Ro19; 92 Mo(36 Ar,p6n) reaction at E=240 MeV. fragment mass analyzer, measured E(p), I(p), lifetime, identified by A/q, time of arrival and energy-loss signal. A transition with E(p)=882 keV 10 and 12 Pr g.s.

1972Bo28,1990Bo39; ⁹⁶Ru(³²S,p6n) E=275 MeV, on-line ms, helium jet, proportional counter, E(p)=0.83 MeV 5 proton emitter with T_{1/2}=1.4 s 8 has been postulated as ¹²¹Pr g.s. or a lighter isotope of Lanthanum (1972Bo28), confirmed ¹²¹Pr g.s.(1990Bo39). However, the T_{1/2} value is disagreement with 10 ms +6-3 (2005Ro19).

Tentative evidence of a second, weaker proton peak at \approx 930 keV could be due to proton decay of an isomeric state in ¹²¹Pr (2005Ro19).

121Pr Levels

E(level) J^{π} $T_{1/2}$ S 0.0 (3/2) $10 \text{ ms} \pm 6-3$ 900 10 %

Comments

%p≈100

%p assumed by 2005Ro19 since the measured half-life is much shorter than the calculated β + decay half-life of \approx 300 ms (1997Mo25).

 J^{π} : from calculation of with a highly prolate deformed $3/2^+$ or $3/2^-$ ground-state configuration (2005Ro19).

 $T_{1/2}$: from 2005Ro19. Other: 1.4 s 8 (1972Bo28).