¹²¹Cd β^- decay (8.3 s) 1982Fo04

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Ohya	NDS 111, 1619 (2010)	20-Jan-2009

Parent: ¹²¹Cd: E=214.89; J^{π} =(11/2⁻); $T_{1/2}$ =8.3 s 8; $Q(\beta^{-})$ =4780 80; % β^{-} decay=100.0

1982Fo04: U(n,F) on-line ms, semi γ ce, $\gamma\gamma$.

1982A129: U(n,F) on-line ms, $\beta\gamma$, E β ; deduced Q(β^-).

The decay scheme is that proposed by 1982Fo04 on the basis of $\gamma\gamma$ coin. measurements and $E\gamma$ sums.

¹²¹In Levels

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡
0.0	$9/2^+$	2114.84 10	(9/2-,11/2-)	2396.4 3	(0/2 - 11/2 -)
987.757 1020.84 6	(9/2) $(9/2,11/2,13/2)^+$	2154.21 11 2160.10 8	(11/2 ⁻)	2433.08 7 2477.63 8	(9/2, 11/2) $(11/2^-, 13/2^-)$
1181.56 7 1408.02 8	$(13/2)^+$ $(9/2^+)$	2292.00 7 2331.90 <i>10</i>	$(11/2^{-})$ $(9/2^{-}, 11/2^{-})$	2503.80 <i>16</i> 2510.78 <i>10</i>	$(9/2^{-},11/2^{-})$
1487.12 8	$(9/2^+)$	2357.60 16	$(9/2^{-}, 11/2^{-}, 13/2^{-})$	2562.36 10	$(11/2^{-})$
1504.03 9 2059.39 7	(11/2 ⁻)	2364.88 8 2369.75 10	(11/2) $(9/2^-, 11/2^-)$	2581.40 11	(11/2 ,13/2 ⁻)

 † E(levels) are based on a least-squares fit to E($\gamma's).$

[‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(2.41 \times 10^3 8)$	2581.40	5.0 4	5.15 9	av E β =975 <i>37</i>
$(2.43 \times 10^3 8)$	2562.36	4.5 5	5.21 9	av E β =983 37
· · · · · · · · · · · · · · · · · · ·				$E(\beta)=2510\ 300\ (\text{coin with } 2562\gamma)\ (1982A129).$
$(2.48 \times 10^3 8)$	2510.78	3.02 4	5.43 8	av Eβ=1007 37
· · · · · · · · · · · · · · · · · · ·				$E(\beta)=2640\ 550\ (\text{coin with } 2511\gamma)\ (1982A129).$
$(2.49 \times 10^3 8)$	2503.80	1.22 13	5.82 9	av E β =1010 37
$(2.52 \times 10^3 8)$	2477.63	6.7 <i>3</i>	5.10 8	av E β =1023 37
· · · · · · · · · · · · · · · · · · ·				$E(\beta)=2320 \ 400 \ (coin \ with \ 1457\gamma) \ (1982Al29).$
$(2.54 \times 10^3 8)$	2455.08	8.8 <i>5</i>	5.00 8	av Eβ=1033 <i>3</i> 7
				$E(\beta)=2640 \ 300 \ (\text{coin with } 2455\gamma) \ (1982Al29).$
$(2.60 \times 10^3 8)$	2396.4	0.24 5	6.61 12	av E β =1060 38
$(2.63 \times 10^3 8)$	2369.75	4.6 <i>3</i>	5.34 8	av E β =1073 38
				$E(\beta)=2460 \ 360 \ (\text{coin with } 1381\gamma) \ (1982A129).$
$(2.63 \times 10^3 8)$	2364.88	8.0 8	5.11 9	av E β =1075 38
				$E(\beta)=2670\ 230\ (coin\ with\ 2365\gamma)\ (1982A129).$
$(2.64 \times 10^3 8)$	2357.60	2.00 22	5.71 9	av E β =1078 38
$(2.66 \times 10^3 8)$	2331.90	5.0 5	5.33 9	av E β =1090 38
				$E(\beta)=2760\ 420\ (\text{coin with } 2331\gamma)\ (1982A129).$
$(2.70 \times 10^3 8)$	2292.00	5.4 4	5.33 8	av E β =1109 38
				$E(\beta)=2890\ 600\ (\text{coin with } 1271\gamma),\ E(\beta)=2660\ (\text{coin with } 2292\gamma)\ (1982A129).$
$(2.83 \times 10^3 8)$	2160.10	12.7 8	5.04 8	av E β =1170 38
				$E(\beta)=2830 \ 360 \ (coin \ with \ 1139\gamma) \ (1982Al29).$
$(2.86 \times 10^3 8)$	2134.21	1.4 5	6.01 17	av E β =1182 38
$(2.88 \times 10^3 8)$	2114.84	2.08 19	5.86 8	av Eβ=1191 38
				$E(\beta)=2730 \ 410 \ (coin \ with \ 2115\gamma) \ (1982Al29).$
$(2.94 \times 10^3 8)$	2059.39	18.7 12	4.94 8	av E β =1217 38
				$E(\beta)=2830 \ 140 \ (coin \ with \ 2059\gamma) \ (1982Al29).$

Continued on next page (footnotes at end of table)

¹²¹Cd β^- decay (8.3 s) 1982Fo04 (continued)

β^- radiations (continued)

Comments

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft		
(3.49×10 ³ 8)	1504.03	1.0 4	6.53 19	av Eβ=1478 38	
$(3.51 \times 10^3 8)$	1487.12	0.8 4	6.63 23	av E β =1486 38	
$(3.81 \times 10^3 8)$	1181.56	2.6 9	6.28 17	av Eβ=1630 <i>38</i>	
$(4.01 \times 10^3 8)$	987.75	1.6 9	6.6 <i>3</i>	av Eβ=1722 <i>38</i>	
$(4.99 \times 10^3 8)$	0.0	4.8 25	6.52 24	av E β =2190 38	

[†] Absolute intensity per 100 decays.

 $\gamma(^{121}\text{In})$

I γ normalization: from $\Sigma I(\gamma + ce \text{ to } g.s.) = 95.2\%$ assuming $I(\beta^- \text{ to } g.s.) = 4.8\%$ in accordance with similar 1st forbidden $\beta^- (11/2^- \text{ to } 9/2^+)$ with logft=6.5 in this mass range.

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult.	δ	α #	Comments
100.75 10	16.4 <i>15</i>	2160.10	(11/2 ⁻)	2059.39	(11/2 ⁻)	M1		0.500	$\alpha(K)=0.433\ 7;\ \alpha(L)=0.0547\ 8;\ \alpha(M)=0.01063$ $I6;\ \alpha(N+)=0.00209\ 3$ $\alpha(N)=0.00194\ 3;\ \alpha(O)=0.0001435\ 21$ Mult.: from $\alpha(K)=0.36\ 10$.
112.74 10	5.0 4	2477.63	(11/2 ⁻ ,13/2 ⁻)	2364.88	(11/2 ⁻)	M1+E2	+0.76 +55-43	0.60 18	$\alpha(K)=0.48 \ I3; \ \alpha(L)=0.10 \ 5; \ \alpha(M)=0.019 \ 9; \ \alpha(N+)=0.0035 \ I5 \ \alpha(N)=0.0034 \ I5; \ \alpha(O)=0.00016 \ 5 \ Mult.,\delta: \ from \ \alpha(K)exp=0.48 \ I2. \ \alpha: \ for \ \delta=1.0, \ uncertainty \ chosen \ to \ overlap \ M1, \ E2 \ theory \ values.$
160.73 <i>15</i>	2.6 3	1181.56	(13/2)+	1020.84	(9/2,11/2,13/2)+	E2		0.288	$\alpha(K)=0.231 4; \ \alpha(L)=0.0455 7; \ \alpha(M)=0.00903$ 13; \alpha(N+)=0.001654 24 \alpha(N)=0.001579 23; \alpha(O)=7.59\times10^{-5} 11 Mult.: from \alpha(K)exp=0.25 6.
185.6 [†] <i>3</i> 194.6 <i>3</i>	1.4 5 1.2 2	2477.63 1181.56	(11/2 ⁻ ,13/2 ⁻) (13/2) ⁺	2292.00 987.75	$(11/2^{-})$ $(9/2)^{+}$	[E2]		0.1473	α (K)=0.1208 <i>18</i> ; α (L)=0.0214 <i>4</i> ; α (M)=0.00423 <i>7</i> ; α (N+)=0.000784 <i>12</i> α (N)=0.000745 <i>12</i> ; α (O)=3.90×10 ⁻⁵ 6
289.43 <i>15</i> 317.4 <i>4</i> 340.4 <i>4</i> 418.2 8	2.5 <i>3</i> 2.0 <i>5</i> 2.0 <i>5</i> 1.0 <i>3</i>	2581.40 2477.63 2455.08 2477.63	$(11/2^-, 13/2^-)$ $(11/2^-, 13/2^-)$ $(9/2^-, 11/2^-)$ $(11/2^-, 13/2^-)$	2292.00 2160.10 2114.84 2059.39	$(11/2^{-})$ $(11/2^{-})$ $(9/2^{-}, 11/2^{-})$ $(11/2^{-})$				
420.10 <i>10</i>	21.0 10	1408.02	(9/2+)	987.75	(9/2)+	M1,E2		0.0114 4	$\alpha(K)=0.00985\ 21;\ \alpha(L)=0.00128\ 11;$ $\alpha(M)=0.000249\ 21;\ \alpha(N+)=4.8\times10^{-5}\ 4$ $\alpha(N)=4.5\times10^{-5}\ 4;\ \alpha(O)=3.15\times10^{-6}\ 5$ Mult.: from $\alpha(K)$ exp=0.017 10.
447.08 10	16.8 10	2581.40	$(11/2^-, 13/2^-)$	2134.21					
466.15 10	6.64	1487.12	$(9/2^+)$ $(11/2^-)$	1020.84	$(9/2,11/2,13/2)^+$				
502.9 0 572.24 10	5.0 <i>10</i> 9.6 <i>6</i>	2059.39	(11/2) $(11/2^{-})$	2039.39	(11/2) $(9/2^+)$				
651.5 6	2.4 6	2059.39	$(11/2^{-})$	1408.02	$(9/2^+)$				
751.73 15	6.1 6	2160.10	$(11/2^{-})$	1408.02	(9/2+)				
827.84 84463	3.6 <i>10</i> 4 7 <i>15</i>	2331.90	$(9/2^{-},11/2^{-})$ $(9/2^{-},11/2^{-})$	1504.03	$(9/2^{+})$				
860.7 6	2.6 8	2364.88	$(11/2^{-})$	1504.03	()/2)				
865.7 4	2.8 8	2369.75	(9/2-,11/2-)	1504.03					
878.2 3	3.3 9	2059.39	$(11/2^{-})$	1181.56	$(13/2)^+$				
884.18	1.5 4	2292.00	$(11/2^{-})$	1408.02	$(9/2^+)$				

 $\boldsymbol{\omega}$

$\gamma(^{121}\text{In})$ (continued)

Eγ	I_{γ}^{\ddagger}	E _i (level)	J_i^π	E_f	J_f^π
952.54 10	24.2	2134.21		1181.56	$(13/2)^+$
956.9 8	1.6 4	2364.88	$(11/2^{-})$	1408.02	$(9/2^+)$
978.8 8	5.6 15	2160.10	$(11/2^{-})$	1181.56	$(13/2)^+$
987.81 10	65 4	987.75	$(9/2)^+$	0.0	9/2+
1000.0 2	4.2 6	2503.80		1504.03	
1020.89 10	90 <i>3</i>	1020.84	$(9/2,11/2,13/2)^+$	0.0	9/2+
1038.5 8	72	2059.39	$(11/2^{-})$	1020.84	(9/2,11/2,13/2)+
1069.49 10	9.5 <i>5</i>	2477.63	$(11/2^{-}, 13/2^{-})$	1408.02	$(9/2^+)$
1102.9 6	1.5 5	2510.78	$(9/2^{-}, 11/2^{-})$	1408.02	$(9/2^+)$
1110.6 <i>3</i>	4.0 10	2292.00	$(11/2^{-})$	1181.56	$(13/2)^+$
1127.0 8	1.6 4	2114.84	$(9/2^{-}, 11/2^{-})$	987.75	$(9/2)^+$
1139.35 10	29 2	2160.10	$(11/2^{-})$	1020.84	$(9/2,11/2,13/2)^+$
1174.1 <i>3</i>	3.3 5	2581.40	$(11/2^{-}, 13/2^{-})$	1408.02	$(9/2^+)$
1181.45 10	59 2	1181.56	$(13/2)^+$	0.0	9/2+
1183.4 2	62	2364.88	$(11/2^{-})$	1181.56	$(13/2)^+$
1214.8 <i>3</i>	1.2 2	2396.4		1181.56	$(13/2)^+$
1271.30 10	15.8 8	2292.00	$(11/2^{-})$	1020.84	$(9/2,11/2,13/2)^+$
1296.2 8	2.6 6	2477.63	$(11/2^{-}, 13/2^{-})$	1181.56	$(13/2)^+$
1311.0 8	3.2 8	2331.90	$(9/2^{-},11/2^{-})$	1020.84	$(9/2,11/2,13/2)^+$
1336.75 15	10.0 10	2357.60	$(9/2^{-},11/2^{-},13/2^{-})$	1020.84	$(9/2,11/2,13/2)^+$
1380.9 8	1.8 5	2562.36	$(11/2^{-})$	1181.56	$(13/2)^+$
1381.97 10	15.3 10	2369.75	$(9/2^{-},11/2^{-})$	987.75	$(9/2)^+$
1399.9 2	2.3 4	2581.40	$(11/2^{-}, 13/2^{-})$	1181.56	$(13/2)^{+}$
1408.0 2	1.5 3	1408.02	$(9/2^+)$	0.0	9/2
1433.81 15	3.4 5	2455.08	(9/2, 11/2)	1020.84	$(9/2,11/2,13/2)^+$
1456.90 10	8.4 5	2477.63	(11/2, 13/2)	1020.84	$(9/2,11/2,13/2)^{+}$
1467.54 10	15.8 8	2455.08	(9/2, 11/2)	987.75	$(9/2)^{-1}$
1487.27 15	11.5 0	1487.12	$(9/2^{+})$	0.0	9/2 ⁺
1504.07 10	18.2 10	1504.05		0.0	9/2
1515.8 2	1.9 3	2503.80		987.75	$(9/2)^+$
2059.41 10	100 4	2059.39	$(11/2^{-})$	0.0	9/2+
2114.83 10	10.8 6	2114.84	$(9/2^{-},11/2^{-})$	0.0	9/2+
2291.83 10	9.5 6	2292.00	$(11/2^{-})$	0.0	9/2+
2331.90 10	13.3 8	2331.90	$(9/2^{-},11/2^{-})$	0.0	9/2+
2364.83 10	38.2	2364.88	$(11/2^{-})$	0.0	9/2+
2369.77 15	5.1 4	2369.75	$(9/2^{-}, 11/2^{-})$	0.0	9/21
~2410.8 3	1.2.2	0455.00	(0/2 - 11/2 -)	0.0	0/2+
2455.00 10	23 2	2455.08	(9/2, 11/2)	0.0	9/21
2510.75 10	13.0 9	2510.78	(9/2, 11/2)	0.0	9/2 ⁺
2562.33 10	17.7 10	2362.36	(11/2)	0.0	9/21

4

 $\gamma(^{121}\text{In})$ (continued)

- [†] The placement of both the 185.6 γ and 1515.8 γ from the 2510.78 level by 1982Fo04 gave very poor energy fit (\approx 7 keV). The evaluators modified their placement from different levels; 2477.62 (185.6 γ) and 2503.80 level (1515.8 γ), respectively.
- ^{\ddagger} For absolute intensity per 100 decays, multiply by 0.200 4.
- [#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

 $\boldsymbol{\nabla}$

 $^{121}_{49}\mathrm{In}_{72}\text{-}6$