¹²¹Cd β^- decay (13.5 s) 1982Fo04

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	S. Ohya	NDS 111, 1619 (2010)	20-Jan-2009					

Parent: ¹²¹Cd: E=0.0; $J^{\pi}=(3/2^+)$; $T_{1/2}=13.5$ s 3; $Q(\beta^-)=4780\ 80$; % β^- decay=100.0

1982Fo04: U(n,F) on-line ms, semi γ ce, $\gamma\gamma$.

1982Al29: U(n,F) on-line ms, $\beta\gamma$, E β ; deduced Q(β^-).

The decay scheme is that proposed by 1982Fo04 on the basis of $\gamma\gamma$ and $E\gamma$ sums.

¹²¹In Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0‡	9/2+	23.1 s 6	
313.69 [‡] 10	1/2-	3.88 min 10	
637.86 9	3/2-		
987.05 10	$(3/2^+)$	5.5 ns 3	$T_{1/2}$: from $\beta \gamma(t)$ in ¹²¹ Cd β^- decay (1982Fo04).
987.81 <i>10</i>	$(9/2)^+$		
1040.30 9	$(5/2)^+$		
1078.99 12	5/2-		
1197.27 12	$(1/2^+)$	<2 ns	$T_{1/2}$: from $\beta \gamma(t)$ in ¹²¹ Cd β^- decay (1982Fo04).
1315.15 8	$(5/2^+)$		
1460.6 4			
1483.24 9	$(5/2^+)$		
1759.8 4			
1792.01 19			
1961.23 16	$(1/2^+, 3/2^+)$		
1965.78 <i>14</i>	$(1/2^+, 3/2^+, 5/2^+)$		
1988.81 <i>19</i>			
2136.46 12	$(3/2^+)$		
2222.00 13	$(1/2^+, 3/2^+, 5/2^+)$		
2264.89 10	$(5/2)^+$		
2299.45 15	$(1/2^+, 3/2^+, 5/2^+)$		
2336.92 10	$(1/2^+, 3/2^+)$		
2382.11 22	$(3/2^+, 5/2^+)$		
2472.66 13	$(1/2^+, 3/2^+, 5/2^+)$		
2491.77 12	$(1/2^+, 3/2^+, 5/2^+)$		
2523.18 16	$(3/2^+, 5/2^+)$		
2538.77 22			
2611.69 21	$(1/2^+, 3/2^+, 5/2^+)$		

[†] E(levels) are based on a least-squares fit to $E(\gamma's)$.

[‡] From Adopted Levels.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(2.17 \times 10^3 8)$	2611.69	1.9 4	5.60 12	av E β =862 37
$(2.24 \times 10^3 8)$	2538.77	0.52 10	6.22 11	av Eβ=895 <i>37</i>
$(2.26 \times 10^3 8)$	2523.18	3.8 4	5.37 8	av Eβ=902 37
				$E(\beta)=2710\ 400\ (\text{coin with } 1885\gamma)\ (1982A129).$
$(2.29 \times 10^3 8)$	2491.77	4.2 3	5.35 8	av Eβ=917 37
$(2.31 \times 10^3 8)$	2472.66	2.81 22	5.54 8	av Eβ=926 37
$(2.40 \times 10^3 8)$	2382.11	2.81 25	5.60 8	av E β =967 37
$(2.44 \times 10^3 8)$	2336.92	9.5 5	5.11 7	av E β =988 <i>37</i>

Continued on next page (footnotes at end of table)

¹²¹Cd β^- decay (13.5 s) 1982Fo04 (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
				$E(\beta)=2650 \ 360 \ (coin \ with \ 1699\gamma) \ (1982Al29).$
$(2.48 \times 10^3 8)$	2299.45	3.1 4	5.62 9	av E β =1006 37
$(2.52 \times 10^3 8)$	2264.89	7.0 6	5.29 7	av E β =1022 <i>37</i>
				$E(\beta)=2590\ 610\ (\text{coin with } 1277\gamma)\ (1982A129).$
$(2.56 \times 10^3 8)$	2222.00	4.4 3	5.53 7	av Eβ=1041 38
				$E(\beta)=2690 \ 320 \ (coin \ with \ 1584\gamma) \ (1982Al29).$
$(2.64 \times 10^3 8)$	2136.46	11.7 6	5.16 6	av E β =1081 38
2				$E(\beta)=2630 \ 360 \ (\text{coin with } 1096\gamma) \ (1982A129).$
$(2.79 \times 10^3 8)$	1988.81	1.96 <i>21</i>	6.04 8	av E β =1150 38
$(2.81 \times 10^3 8)$	1965.78	6.4 10	5.54 9	av E β =1161 38
$(2.82 \times 10^3 8)$	1961.23	5.5 4	5.61 7	av E β =1163 38
				$E(\beta)=2700 \ 440 \ (coin \ with \ 1647\gamma) \ (1982A129).$
$(2.99 \times 10^3 8)$	1792.01	2.24 21	6.10 7	av E β =1242 38
$(3.02 \times 10^3 8)$	1759.8	1.19 <i>16</i>	6.40 8	av E β =1257 38
$(3.30 \times 10^3 8)$	1483.24	4.0 7	6.03 9	av E <i>β</i> =1386 <i>38</i>
$(3.32 \times 10^3 8)$	1460.6	0.53 10	6.92 10	av E β =1397 <i>38</i>
$(3.46 \times 10^3 8)$	1315.15	10.1 11	5.72 7	av E β =1466 38
$(3.58 \times 10^3 8)$	1197.27	0.9 5	6.83 25	av E β =1521 38
$(3.70 \times 10^3 8)$	1078.99	1.9 6	6.57 15	av E β =1577 38
$(3.74 \times 10^3 8)$	1040.30	6.3 12	6.07 10	av E β =1595 38
$(3.79 \times 10^3 8)$	987.05	3.9 16	6.30 19	av E β =1620 38
$(4.47 \times 10^3 8)$	313.69	3.3 10	6.68 14	av E β =1939 38

[†] Absolute intensity per 100 decays.

I γ normalization: from $\Sigma I(\gamma + ce \text{ to g.s.} + 314 \text{ level}) = 96.7\%$ assuming $I(\beta^- \text{ to g.s.}) = 3.3\%$ in accordance with similar 1st forbidden $\beta^- (1/2^- \text{ to } 3/2^+)$ transition with logft=6.7 in this mass range.

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^π	Mult.	α^{\ddagger}	Comments
210.21 10	6.3 4	1197.27	$(1/2^+)$	987.05	(3/2 ⁺)	E2	0.1127	$\alpha(K)=0.0931 \ 14; \ \alpha(L)=0.01591 \ 23; \ \alpha(M)=0.00314 \ 5; \\ \alpha(N+)=0.000584 \ 9 \\ \alpha(N)=0.000554 \ 8; \ \alpha(Q)=2.00\times 10^{-5} \ 5.00000000000000000000000000000000000$
236.2 4	1.0 <i>3</i>	1315.15	(5/2+)	1078.99	5/2-	[E1]	0.01550	Mult.: from α (K)exp=0.13 4. α (K)=0.01350 20; α (L)=0.001631 24; α (M)=0.000315 5; α (N+)=6.11×10 ⁻⁵ 9
274.91 10	4.1 <i>3</i>	1315.15	(5/2+)	1040.30	(5/2)+	[M1,E2]	0.039 7	$ \begin{array}{l} \alpha(\mathrm{N}) = 5.71 \times 10^{-5} \ 9; \ \alpha(\mathrm{O}) = 3.99 \times 10^{-6} \ 6 \\ \alpha(\mathrm{K}) = 0.033 \ 5; \ \alpha(\mathrm{L}) = 0.0047 \ 12; \ \alpha(\mathrm{M}) = 0.00092 \ 24; \\ \alpha(\mathrm{N}+) = 0.00018 \ 5 \end{array} $
299.06 15	2.1 3	2264.89	(5/2)+	1965.78	(1/2+,3/2+,5/2+)	[M1,E2]	0.030 4	α (N)=0.00016 4; α (O)=1.07×10 ⁻⁵ 15 α : for δ =1.0, uncertainty chosen to overlap M1, E2 theory values. α (K)=0.026 3; α (L)=0.0036 8; α (M)=0.00070 16; α (N+)=0.00013 3
313.6 2		313.69	1/2-	0.0	9/2+	M4	1.481	α (N)=0.00013 3; α (O)=8.3×10 ⁻⁶ 9 α : for δ =1.0, uncertainty chosen to overlap M1, E2 theory values. α (K)=1.163 <i>17</i> ; α (L)=0.256 4; α (M)=0.0525 8; α (N+)=0.00997 <i>15</i>
324.22 10	100 4	637.86	3/2-	313.69	1/2-	M1,E2	0.024 3	$\begin{aligned} &\alpha(N) = 0.00942 \ 14; \ \alpha(O) = 0.000545 \ 8\\ &\text{Mult.: from } \alpha(K) \text{exp} = 1.0 \ 2.\\ &\alpha(K) = 0.0205 \ 19; \ \alpha(L) = 0.0028 \ 5; \ \alpha(M) = 0.00054 \ 10;\\ &\alpha(N+) = 0.000104 \ 18 \end{aligned}$
								α (N)=9.8×10 ⁻⁵ 17; α (O)=6.6×10 ⁻⁶ 6 E _{γ} : 324.976 13 measured by crystal spectrometer (1979Bo26). Mult.: from α (K)exp=0.018 2.
328.0 2	3.7 10	1315.15	(5/2+)	987.05	(3/2+)	[M1,E2]	0.0231 24	α'. for δ=1.0, uncertainty chosen to overlap M1, E2 theory values. $\alpha(K)=0.0198 \ 18; \ \alpha(L)=0.0027 \ 5; \ \alpha(M)=0.00052 \ 10; \ \alpha(N+)=0.000101 \ 17 \ \alpha(N)=9.4\times10^{-5} \ 16; \ \alpha(O)=6.3\times10^{-6} \ 5$
349.20 10	26 2	987.05	(3/2+)	637.86	3/2-	[E1]	0.00548 8	α: for δ=1.0, uncertainty chosen to overlap M1, E2 theory values. α=0.00548 8; α(K)=0.00477 7; α(L)=0.000571 8; α(M)=0.0001102 16; α(N+)=2.15×10 ⁻⁵ 3
381.6 <i>3</i> 402.51 <i>10</i> 441.1 <i>2</i> 559.34 <i>15</i> 594.74 <i>15</i>	1.1 2 7.3 4 3.5 4 2.9 3 4.7 4	1460.6 1040.30 1078.99 1197.27 1792.01	(5/2) ⁺ 5/2 ⁻ (1/2 ⁺)	1078.99 637.86 637.86 637.86 1197.27	5/2 ⁻ 3/2 ⁻ 3/2 ⁻ 3/2 ⁻ (1/2 ⁺)			$\alpha(N)=2.01\times10^{-5}$ 3; $\alpha(O)=1.435\times10^{-6}$ 21 E _{γ} : 349.937 16 measured by crystal spectrometer (1979Bo26). $\alpha(K)=0.00381$; $\alpha(L)=0.00045$

 $\boldsymbol{\omega}$

$\gamma(^{121}In)$ (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
650.6 <i>3</i>	8.6 15	1965.78	$(1/2^+, 3/2^+, 5/2^+)$	1315.15 ($(5/2^+)$	1315.18 10	13.6 7	1315.15	$(5/2^+)$	0.0	9/2+
673.6 2	6.8 15	987.05	$(3/2^+)$	313.69	$1/2^{-}$	1323.6 <i>3</i>	2.7 5	1961.23	$(1/2^+, 3/2^+)$	637.86	$3/2^{-}$
677.21 10	7.1 5	1315.15	$(5/2^+)$	637.86 3	3/2-	1325.9 5	1.3 <i>3</i>	2523.18	$(3/2^+, 5/2^+)$	1197.27	$(1/2^+)$
765.28 10	12.1 8	1078.99	5/2-	313.69	$1/2^{-}$	1327.9 <i>3</i>	3.2 4	1965.78	$(1/2^+, 3/2^+, 5/2^+)$	637.86	$3/2^{-}$
781.62 10	2.7 3	2264.89	$(5/2)^+$	1483.24 ($(5/2^+)$	1444.2 5	0.8 2	2523.18	$(3/2^+, 5/2^+)$	1078.99	5/2-
899.0 <i>3</i>	2.0 3	2382.11	$(3/2^+, 5/2^+)$	1483.24 ($(5/2^+)$	1451.20 15	2.4 2	2491.77	$(1/2^+, 3/2^+, 5/2^+)$	1040.30	$(5/2)^+$
909.82 15	4.1 4	1988.81		1078.99 5	5/2-	1483.23 10	16.6 8	1483.24	$(5/2^+)$	0.0	9/2+
938.9 <i>3</i>	2.0 5	2136.46	$(3/2^+)$	1197.27 ($(1/2^+)$	1498.4 5	0.5 2	2136.46	$(3/2^+)$	637.86	3/2-
978.6 <i>3</i>	3.8 10	1965.78	$(1/2^+, 3/2^+, 5/2^+)$	987.05 ($(3/2^+)$	1504.6 8	0.8 2	2491.77	$(1/2^+, 3/2^+, 5/2^+)$	987.05	$(3/2^+)$
987.81 <i>10</i>	3.8 8	987.81	$(9/2)^+$	0.0 9	9/2+	1584.13 <i>10</i>	9.3 5	2222.00	$(1/2^+, 3/2^+, 5/2^+)$	637.86	3/2-
1039.9 8	1.5 5	2523.18	$(3/2^+, 5/2^+)$	1483.24 ($(5/2^+)$	1627.13 <i>15</i>	3.5 2	2264.89	$(5/2)^+$	637.86	$3/2^{-}$
1040.26 15	34 2	1040.30	$(5/2)^+$	0.0 9	9/2+	1647.47 <i>15</i>	8.9 5	1961.23	$(1/2^+, 3/2^+)$	313.69	$1/2^{-}$
1057.5 2	1.8 2	2136.46	$(3/2^+)$	1078.99 5	5/2-	1661.77 <i>15</i>	3.2 <i>3</i>	2299.45	$(1/2^+, 3/2^+, 5/2^+)$	637.86	$3/2^{-}$
1096.04 15	12.4 6	2136.46	$(3/2^+)$	1040.30 ($(5/2)^+$	1698.85 <i>10</i>	11.5 5	2336.92	$(1/2^+, 3/2^+)$	637.86	3/2-
1121.9 <i>3</i>	2.5 3	1759.8		637.86 3	3/2-	1744.5 <i>4</i>	1.2 2	2382.11	$(3/2^+, 5/2^+)$	637.86	$3/2^{-}$
1128.6 8	2.0 7	2611.69	$(1/2^+, 3/2^+, 5/2^+)$	1483.24 ($(5/2^+)$	1822.6 2	3.2 <i>3</i>	2136.46	$(3/2^+)$	313.69	$1/2^{-}$
1149.9 2	4.6 4	2136.46	$(3/2^+)$	987.05 ($(3/2^+)$	1834.79 <i>10</i>	5.9 4	2472.66	$(1/2^+, 3/2^+, 5/2^+)$	637.86	$3/2^{-}$
1258.8 2	1.2 2	2299.45	$(1/2^+, 3/2^+, 5/2^+)$	1040.30 ($(5/2)^+$	1854.02 10	5.7 5	2491.77	$(1/2^+, 3/2^+, 5/2^+)$	637.86	$3/2^{-}$
1277.1 <i>3</i>	3.8 8	2264.89	$(5/2)^+$	987.81 ($(9/2)^+$	1885.30 <i>15</i>	4.3 <i>3</i>	2523.18	$(3/2^+, 5/2^+)$	637.86	3/2-
1277.7 <i>3</i>	2.5 7	2264.89	$(5/2)^+$	987.05 ($(3/2^+)$	1900.9 2	1.1 2	2538.77		637.86	$3/2^{-}$
1296.86 10	7.9 5	2336.92	$(1/2^+, 3/2^+)$	1040.30 ($(5/2)^+$	1973.8 2	1.9 2	2611.69	$(1/2^+, 3/2^+, 5/2^+)$	637.86	3/2-
1302.6 4	2.7 3	2382.11	$(3/2^+, 5/2^+)$	1078.99 5	5/2-	2023.0 2	0.5 1	2336.92	$(1/2^+, 3/2^+)$	313.69	$1/2^{-}$
1312.6 8	2.2 5	2299.45	$(1/2^+, 3/2^+, 5/2^+)$	987.05 ($(3/2^+)$						

4

[†] For absolute intensity per 100 decays, multiply by 0.477 *13*. [‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

From ENSDF

¹²¹Cd β^- decay (13.5 s) 1982Fo04

¹²¹Cd β^- decay (13.5 s) 1982Fo04

121 Cd β^- decay (13.5 s) 1982Fo04

¹²¹₄₉In₇₂