$^{121}_{49}$ In₇₂-1

Adopted Levels, Gammas

		Type	Author	History Citation	Literature Cutoff Date
	F	ull Evaluation	S. Ohya	NDS 111,1619 (2010)	20-Jan-2009
$Q(\beta^{-})=3.36\times10^{3}$ Note: Current ev	3; $S(n)=8.18\times10^{-2}$ aluation has used	3 5; S(p)=9.17×10 the following Q r	$0^{3} 3; Q(\alpha) =$	=-6.08×10 ³ <i>3</i> 2012W 278177 499173	7a38 28-6080 31 2009AuZZ.
				¹²¹ In Levels	
			Cross 1	Reference (XREF) Flags	3
		A 1 B 1 C 1	²¹ Cd β^- dec ²¹ Cd β^- dec ²¹ In IT deca	cay (13.5 s) D 12 cay (8.3 s) E 12 ay (3.88 min) F 23	$^{22}Sn(d,^{3}He)$ $^{24}Sn(p,\alpha)$ $^{38}U(^{12}C,x\gamma)$
E(level) [‡]	J^{π}	T _{1/2} †	XREF		Comments
0.0#	9/2+	23.1 s 6	ABCDEF	%β ⁻ =100	
				μ =+5.502 5; Q=+0.81 J ^{π} : from on-line atomi L=4 in (d, ³ He) and T _{1/2} : from 1974Gr29. (1963Wa30), 30.0 s μ : from 2005St24; val	14 11; Configuration= $(\pi \ 1g_{9/2})^{-1}$ ic beam magnetic resonance (1984Be40) and (p, α). Others: 30 s 3 (1960Yu01), 29 s 8 2 (1974Sc05). ue relative to μ =+5.5408 2 for ¹¹⁵ In.
313.68 7	1/2-	3.88 min 10	A CDE	Q: from 2005St24; Ste $\%\beta^-=98.8$ 2; %IT=1.2 $\mu=-0.355$ 4; Configur. E(level): from weighte $\%\beta^-$, %IT from 1976F J ^{π} : from on-line atomi L=1 in (d, ³ He), (p,c T _{1/2} : from 1974Gr29. (1963Wa30), 3.1 mi w: from 2005St24; val	ernheimer correction or other correction included. 2 2 ation= $(\pi \ 3p_{1/2})^{-1}$ ed average from decay (13.5 s, 3.88 m). Fo02. ic beam magnetic resonance (1984Be40) and α). Others: 3.1 min 3 (1960Yu01), 3.3 min 10 in 4 (1965We04). us relative to $\mu = 155408$ 2 for ¹¹⁵ In
637.90 7	3/2-		A DE	Configuration= $(\pi 2p_{3/2})$ J ^{π} : L=1 in (d, ³ He); J= cross section in (p.o.	$_{2}^{2)^{-1}}$ =3/2 is consistent with angular distribution and
987.17 ^{&} 10	(3/2 ⁺)	5.5 ns <i>3</i>	A	J^{π} : log <i>ft</i> =6.3 from (3/ isotopes.	(2^+) ; systematics suggest $(3/2^+)$ in odd indium
987.69 <mark>&</mark> 6	$(9/2)^+$		AB F	$J_{1/2}^{\pi}$: γ' s from $(13/2)^+$, ($(5/2)^+$.
1020.83 [#] 6 1040.33 8 1078.98 <i>10</i>	(9/2,11/2,13/2) ⁺ (5/2) ⁺ 5/2 ⁻		B DEF A A D	J^{π} : γ to $9/2^+$, E2 γ from J^{π} : γ 's to $9/2^+$, $3/2^-$; J^{π} : L=3 in (p, α); J=5/	from $(13/2)^+$. log $ft \le 6.2$ from $(3/2^+)$. 2 is consistent with angular distribution and
1181.55 [#] 7	(13/2)+		B EF	cross section in (p,a Configuration=((120S) J^{π} : 13/2 ⁺ is consistent	(x). $(\nu 2^+)(\pi 1g_{9/2})^{-1})$ t with angular distribution and cross section in
1197.34 12	(1/2 ⁺)	<2 ns	A	(p, α); E2 γ to π =+. J ^{π} : γ to 3/2 ⁻ , (3/2 ⁺); s	systematics of odd mass indium suggests $1/2^+$.
1315.22 7 1407.99 ^{&} 8	(5/2 ⁺) (9/2 ⁺)		A BDF	J^{π} : log ft=5.7 from (3/ J ^{\pi} : L=(4) in (d, ³ He);	$\gamma^{(2+)}$; γ' s to $3/2^-$, $9/2^+$. γ from $(11/2^-)$.
1460.6 <i>4</i> 1483.26 <i>9</i> 1487.11 <i>8</i>	(5/2 ⁺) (9/2 ⁺)		A A B E	J^{π} : log <i>ft</i> =6.0 from (3/ Configuration=((120S)	$(2^+); \gamma \text{ to } 9/2^+.$ $(\gamma 2^+)(\pi 1g_{9/2})^{-1})$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹²¹In Levels (continued)

E(level) [‡]	J^{π}	$T_{1/2}^{\dagger}$	XREF		Comments		
					J^{π} : J=9/2 is consistent with angular distribution and cross section in		
					$(p,\alpha); \gamma \text{ to } 9/2^+.$		
1504.02 9			В				
1614 5				E			
1759.8 <i>3</i>			Α				
1792.09 19			Α				
1961.23 15	$(1/2^+, 3/2^+)$		Α		J^{n} : log ft=5.6 from (3/2 ⁺); γ to 1/2 ⁻ .		
1965.83 14	$(1/2^+, 3/2^+, 5/2^+)$		Α	_	J^{π} : log ft=5.5 from (3/2 ⁺).		
19/7 5				E			
1988.80 18			Α		220 10		
2048.0 ^{x} 10	$(11/2^+, 13/2^+)$			F	J^{π} : γ to (9/2 ⁺) in ²³⁸ U(¹² C,x γ) and probable band assignment.		
2059.39 7	$(11/2^{-})$		В		J^{π} : log ft=4.9 from (11/2 ⁻); γ 's to (13/2) ⁺ , (9/2 ⁺).		
2114.84 10	$(9/2^{-},11/2^{-})$		В		J ^{<i>n</i>} : log $ft=5.9$ from (11/2 ⁻); γ to 9/2 ⁺ .		
2129 5				E			
2134.20 [@] 11	$(15/2^{-})$		В	F	J^{π} : systematics of high spin states of odd mass indium.		
2136.36 12	$(3/2^+)$		Α		J^{π} : log ft=5.2 from (3/2 ⁺); γ 's to 1/2 ⁻ , 5/2 ⁻ .		
2160.09 8	$(11/2^{-})$		В		J ^{π} : log ft=5.0 from (11/2 ⁻); γ 's to (13/2) ⁺ , (9/2 ⁺).		
2222.04 13	$(1/2^+, 3/2^+, 5/2^+)$		Α		J^{π} : log ft=5.5 from (3/2 ⁺).		
2247 5				E	-		
2264.91 10	$(5/2)^+$		Α		J^{n} : log ft=5.3 from (3/2 ⁺); γ to 9/2 ⁺ .		
2292.00 7	$(11/2^{-})$		В		J^{π} : log ft=5.1 from (11/2 ⁻); γ 's to 9/2 ⁺ , (13/2) ⁺ .		
2299.49 14	$(1/2^+, 3/2^+, 5/2^+)$		A		J^{π} : log ft=5.6 from (3/2 ⁺).		
2331.90 10	(9/2, 11/2)		B		J^{*} : log ft=5.3 from (11/2); γ to 9/2 ⁺ .		
2336.95 10	$(1/2^+, 3/2^+)$		A		J^{π} : log $ft=5.1$ from $(3/2^{-})$; γ to $1/2^{-}$.		
2357.59 10	(9/2, 11/2, 13/2)		В		$J^{*}: \log ft=5.7$ from (11/2).		
2304.87 0	(11/2)		Б	E	J^{*} : $\log f = 3.1 \text{ from } (11/2); \gamma \le 10.9/2^{\circ}, (15/2)^{\circ}$.		
2307 3	$(0/2^{-} 11/2^{-})$		D	E	I^{π} : log ft-5.2 from $(11/2^{-})$: of to $0/2^{+}$		
2309.71 9	(9/2, 11/2) $(3/2^+, 5/2^+)$		<u>ь</u>		J . $\log f_{t-5.5} = 10 \ln (11/2^{-}), \gamma = 10^{-9}/2^{-}$. $I^{\pi} \cdot \log f_{t-5.6} = 6 \text{ from } (3/2^{+}) \cdot \gamma = t_0 \cdot 5/2^{-1}$		
2306.4.3	(3/2, 3/2)		R		J . $\log ji = 3.0$ from $(5/2)$, j to $5/2$.		
2455.05.7	$(9/2^{-} 11/2^{-})$		B		I^{π} : log $ft=5.0$ from $(11/2^{-})$: γ to $9/2^{+}$		
2472.71 13	$(1/2^+, 3/2^+, 5/2^+)$		A		I^{π} : log $ft=5.5$ from $(3/2^{+})$.		
2477.61 8	$(1/2^{-}, 13/2^{-})$		В		J^{π} : log ft =5.1 from (11/2 ⁻): γ to (13/2) ⁺ .		
2491.81 11	$(1/2^+, 3/2^+, 5/2^+)$		Α		J^{π} : log $ft=5.4$ from $(3/2^+)$.		
2503.76 16			В				
2510.78 10	$(9/2^{-}, 11/2^{-})$		В		J^{π} : log ft=5.4 from (11/2 ⁻); γ to 9/2 ⁺ .		
2523.22 16	$(3/2^+, 5/2^+)$		Α		J^{π} : log ft=5.4 from (3/2 ⁺); γ to 5/2 ⁻ .		
2538.82 22			Α				
2562.36 10	$(11/2^{-})$		В		J^{π} : log ft=5.2 from (11/2 ⁻); γ 's to 9/2 ⁺ , (13/2) ⁺ .		
2581.39 11	$(11/2^{-}, 13/2^{-})$		В		J ^{π} : log ft=5.2 from (11/2 ⁻); γ to (13/2) ⁺ .		
2611.73 21	$(1/2^+, 3/2^+, 5/2^+)$		Α		J^{π} : log <i>ft</i> =5.6 from (3/2 ⁺).		
2134.20+x [@]	$(17/2^{-})$			F	Additional information 1.		
					J^{π} : systematics of high spin states of odd mass indium.		
$2134.20 + y^{@}$	$(19/2^{-})$			F	Additional information 2.		
210 1120 - 5	(1)/=)			-	J^{π} : systematics of high spin states of odd mass indium.		
$2303.0\pm \sqrt{2}$ 10	$(21/2^{-})$			F	I^{π} : systematics of high spin states of odd mass indium		
2303.0 + y = 10	(21/2)			- F	π systematics of high spin states of odd mass indiam.		
2348.0+y" 10	$(21/2^{+})$			F	J [*] : systematics of high spin states of odd mass indium.		
2447.0+y [#] 15	$(25/2^+)$	350 ns <i>50</i>		F	J^{n} : systematics of high spin states of odd mass indium. T _{1/2} : from γ (t) (2002Lu15).		
2664.0+y [@] 15	$(23/2^{-})$			F	J^{π} : systematics of high spin states of odd mass indium.		
$2774.0 + v^{@}$ 18	$(25/2^{-})$			F	I^{π} : systematics of high spin states of odd mass indium		
$2802.0\pm 5^{\#}$ 15	(Ē	I^{π} : systematics of high spin states of odd mass indium		
2002.0Ty 13				г	J . Systematics of high spin states of our mass mutum.		

Adopted Levels, Gammas (continued)

¹²¹In Levels (continued)

E(level) [‡]	\mathbf{J}^{π}	XREF	Comments
3347.0+y [@] 20	(27/2 ⁻)	F	J^{π} : systematics of high spin states of odd mass indium.
3890.0+y [@] 20	(29/2 ⁻)	F	J^{π} : systematics of high spin states of odd mass indium.

[†] Evaluator considers that 23.1-s and 3.88-min components are not well resolved in the half-life measurements by 1974Sc05, Evaluator considers that 25.1-s and 5.80-min components are not were resolved in the interval 1960Yu01, 1963Wa30, 1965We04. * E(levels) with γ decay are from least-squares fit to $E\gamma's$. # Band(A): $\pi g_{9/2}^{-1} \nu h_{11/2}^2$. @ Band(B): Three-particle configuration. Configuration= $\pi g_{9/2}^{-1} \nu h_{11/2}^1 (\nu (d_{5/2} \text{ and/or } g_{7/2})^1)$.

& Band(C): $\pi 1/2$ [431]. Intruder orbital from $\pi(g_{7/2} \text{ and/or } d_{5/2})$.

	Adopted Levels, Gammas (continued)											
$\underline{\gamma(^{121}\text{In})}$												
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_{f}	\mathbf{J}_f^{π}	Mult.@	α &	Comments				
313.68	1/2-	313.60 9	100	0.0	9/2+	M4	1.481	B(M4)(W.u.)=10.2 18 $\alpha(K)=1.163$ 17; $\alpha(L)=0.256$ 4; $\alpha(M)=0.0525$ 8; $\alpha(N+)=0.00997$ 14 $\alpha(N)=0.00942$ 14; $\alpha(O)=0.000545$ 8 E from unicidated currence from decay (12.5 c. 2.88 m)				
637.90	3/2-	324.22 10	100	313.68	1/2-	M1,E2	0.024 3					
987.17	(3/2 ⁺)	349.20 10	100 8	637.90	3/2-	[E1]	0.00548 8	B(E1)(W.u.)=9.4×10 ⁻⁷ <i>12</i> α (K)=0.00477 7; α (L)=0.000571 8; α (M)=0.0001102 <i>16</i> ; α (N+)=2.15×10 ⁻⁵ 3 α (N)=2.01×10 ⁻⁵ 3; α (O)=1.435×10 ⁻⁶ 21				
		673.6 2	26 6	313.68	1/2-	[E1]	0.001150 17	B(E1)(W.u.)= 3.4×10^{-8} 9 α (K)=0.001004 14; α (L)=0.0001181 17; α (M)= 2.28×10^{-5} 4; α (N+)= 4.47×10^{-6} α (N)= 4.17×10^{-6} 6; α (Q)= 3.06×10^{-7} 5				
987.69 1020.83 1040.33	(9/2) ⁺ (9/2,11/2,13/2) ⁺ (5/2) ⁺	987.81 <i>10</i> 1020.89 <i>10</i> 402.51 <i>10</i> 1040.26 <i>15</i>	100 100 <i>3</i> 21 <i>1</i> 100 <i>6</i>	$0.0 \\ 0.0 \\ 637.90 \\ 0.0$	9/2 ⁺ 9/2 ⁺ 3/2 ⁻ 9/2 ⁺							
1078.98	5/2-	441.1 2 765 28 10	29 <i>3</i> 100 7	637.90 313.68	$3/2^{-}$ $1/2^{-}$							
1181.55	(13/2)+	160.73 <i>15</i>	4.4 5	1020.83	$(9/2,11/2,13/2)^+$	E2	0.288	$\alpha(K)=0.231 4; \alpha(L)=0.0455 7; \alpha(M)=0.00903 13; \alpha(N+)=0.001654 24$				
		194.6 <i>3</i>	2.0 3	987.69	(9/2)+	[E2]	0.147	$\alpha(N)=0.00157725, \alpha(O)=7.59\times10^{-11}$ $\alpha(K)=0.1208 \ 18; \alpha(L)=0.0214 \ 4; \alpha(M)=0.00423 \ 7;$ $\alpha(N+)=0.000784 \ 12$ $\alpha(N)=0.000745 \ 12; \alpha(O)=3.90\times10^{-5} \ 6$				
		1181.45 10	100 3	0.0	9/2+		0.440					
1197.34	(1/2 ⁺)	210.21 10	100 6	987.17	(3/2+)	E2	0.113	$\alpha(\mathbf{K})=0.0931\ 14;\ \alpha(\mathbf{L})=0.01591\ 23;\ \alpha(\mathbf{M})=0.00314\ 5;\alpha(\mathbf{N}+)=0.000584\ 9\alpha(\mathbf{N})=0.000554\ 8;\ \alpha(\mathbf{O})=2.99\times10^{-5}\ 5\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.)>12$				
		559.34 <i>15</i>	46 5	637.90	3/2-	[E1]	0.001738 25	B(E1)(W.u.)>2.3×10 ⁻⁷ α (K)=0.001517 22; α (L)=0.000179 3; α (M)=3.46×10 ⁻⁵ 5; α (N+)=6.78×10 ⁻⁶ 10 α (N)=6.32×10 ⁻⁶ 9; α (Q)=4.61×10 ⁻⁷ 7				
1315.22	(5/2+)	236.2 4	7.4 22	1078.98	5/2-			$a_{(1)}=0.52\times10^{-5}$, $a_{(0)}=4.01\times10^{-7}$				

4

 $^{121}_{49}\mathrm{In}_{72}\text{-}4$

					Adopted Levels	, Gammas	(continued)	
					$\gamma(^{121}$ Ir	n) (continue	d)	
E _i (level)	J_i^π	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_{f}	\mathbf{J}_f^π	Mult.@	α ^{&}	Comments
1315.22	(5/2+)	274.91 <i>10</i> 328.0 <i>2</i> 677.21 <i>10</i>	30 2 27 7 52 4	1040.33 987.17 637.90	$(5/2)^+$ $(3/2^+)$ $3/2^-$			
1407.99	(9/2+)	1315.18 <i>10</i> 420.10 <i>10</i>	100 5 100 5	0.0 987.69	9/2 ⁺ (9/2) ⁺	M1,E2	0.0114 4	α (K)=0.00985 21; α (L)=0.00128 11; α (M)=0.000249 21; α (N+)=4.8×10 ⁻⁵ 4 α (N)=4.5×10 ⁻⁵ 4; α (O)=3.15×10 ⁻⁶ 5 α : for δ =1.0.
		1408.0 2	72	0.0	9/2+			
1460.6		381.6 <i>3</i>	100	1078.98	5/2-			
1483.26	$(5/2^+)$	1483.23 10	100	0.0	9/2+			
1487.11	$(9/2^+)$	466.15 10	57 3	1020.83	$(9/2,11/2,13/2)^+$			
1504.00		1487.27 15	100 5	0.0	9/2			
1504.02		1504.07 10	100	0.0	9/2*			
1/39.8		504 74 15	100	1107.24	$\frac{3}{2}$			
1/92.09	(1/2+2/2+)	1222 6 2	20.6	627.00	(1/2)			
1901.25	(1/2, 3/2)	1525.0 5	100 6	313.68	$\frac{3}{2}$			
1965.83	$(1/2^+ 3/2^+ 5/2^+)$	650.6.3	100 0	1315.00	$(5/2^+)$			
1705.05	(1/2, 3/2, 3/2)	978.6.3	43 11	987 17	$(3/2^+)$			
		1327.9.3	36.5	637.90	3/2-			
1988.80		909.82 15	100	1078.98	5/2-			
2048.0	$(11/2^+, 13/2^+)$	640	100	1407.99	$(9/2^+)$			
2059.39	$(11/2^{-})$	572.24 10	9.6 6	1487.11	$(9/2^+)$			
		651.5 6	2.4 6	1407.99	$(9/2^+)$			
		878.2 <i>3</i>	3.3 9	1181.55	$(13/2)^+$			
		1038.5 8	72	1020.83	$(9/2, 11/2, 13/2)^+$			
		2059.41 10	100 4	0.0	9/2+			
2114.84	$(9/2^{-}, 11/2^{-})$	1127.0 8	15 4	987.69	$(9/2)^+$			
		2114.83 10	100 6	0.0	9/2+			
2134.20	$(15/2^{-})$	952.54 10	100	1181.55	$(13/2)^+$			
2136.36	$(3/2^+)$	938.9 <i>3</i>	16 4	1197.34	$(1/2^+)$			
		1057.5 2	15 2	1078.98	5/2-			
		1096.04 15	100 5	1040.33	$(5/2)^+$			
		1149.9 2	3/3	987.17	(3/2')			E_{γ} : The energy fit is poor. Not included in the least-squares fit for E(level). From the E(level) difference one expects $E_{\gamma} = 1148.59 \ I3$.
		1498.4 5	4 2	637.90	3/2-			. ,
		1822.6 2	26 2	313.68	$1/2^{-}$			
2160.09	(11/2 ⁻)	100.75 10	56.5 51	2059.39	(11/2 ⁻)	M1	0.500	$\begin{array}{l} \alpha(\mathrm{K}) = 0.433 \ 7; \ \alpha(\mathrm{L}) = 0.0547 \ 8; \ \alpha(\mathrm{M}) = 0.01063 \ 16; \\ \alpha(\mathrm{N}+) = 0.00209 \ 3 \\ \alpha(\mathrm{N}) = 0.00194 \ 3; \ \alpha(\mathrm{O}) = 0.0001435 \ 21 \end{array}$

S

 $^{121}_{49} \text{In}_{72}\text{-}5$

L

From ENSDF

 $^{121}_{49} \mathrm{In}_{72}\text{-}5$

Adopted Levels, Gammas (continued)

$\gamma(^{121}$ In) (continued)

E _i (level)	J^{π}_i	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_f	J_f^π	Mult. [@]	δ	α &	Comments
2160.09	$(11/2^{-})$	751.73 15	21 2	1407.99	$(9/2^+)$				
		978.8 8	19 5	1181.55	$(13/2)^+$				
		1139.35 10	100 7	1020.83	(9/2,11/2,13/2)+				
2222.04	$(1/2^+, 3/2^+, 5/2^+)$	1584.13 10	100	637.90	3/2-				
2264.91	$(5/2)^+$	299.06 15	55 8	1965.83	$(1/2^+, 3/2^+, 5/2^+)$				
		781.62 10	718	1483.26	$(5/2^+)$				
		1277.1 3	100 20	987.69	$(9/2)^+$				
		1277.7 3	66 18	987.17	$(3/2^+)$				
2202.00	(11/2=)	1627.13 15	92.5	637.90	3/2				
2292.00	(11/2)	884.1 8	9.5.25	1407.99	$(9/2^{+})$ $(12/2)^{+}$				
		1110.6 3	25 0	1181.55	$(13/2)^{+}$				
		12/1.30 10	100 3	1020.85	$(9/2,11/2,13/2)^{+}$				
2299.49	$(1/2^+ 3/2^+ 5/2^+)$	1258 8 2	37.6	1040.33	$(5/2)^+$				
2277.17	(1/2, 3/2, 3/2)	1312.6.8	69 16	987.17	$(3/2^+)$				
		1661.77 15	100 9	637.90	$3/2^{-}$				
2331.90	$(9/2^{-}, 11/2^{-})$	827.8 4	27 8	1504.02	-/-				
		844.6 <i>3</i>	35 11	1487.11	$(9/2^+)$				
		1311.0 8	24 6	1020.83	$(9/2,11/2,13/2)^+$				
		2331.90 10	100 6	0.0	9/2+				
2336.95	$(1/2^+, 3/2^+)$	1296.86 10	69 4	1040.33	$(5/2)^+$				
		1698.85 <i>10</i>	100 4	637.90	3/2-				
		2023.0 2	4 1	313.68	1/2-				
2357.59	$(9/2^{-},11/2^{-},13/2^{-})$	1336.75 15	100	1020.83	$(9/2,11/2,13/2)^+$				
2364.87	$(11/2^{-})$	860.7 6	6.8 21	1504.02	(2.12)				
		956.9 8	4.2 10	1407.99	$(9/2^+)$				
		1183.4 2	16.5	1181.55	$(13/2)^{+}$				
2260 71	(0/2 - 11/2 -)	2364.83 10	100 5	0.0	9/2				
2309.71	(9/2 ,11/2)	1381 07 10	10 7	087.60	$(0/2)^+$				
		2360 77 15	33 3	907.09	(9/2) $0/2^+$				
2382.12	$(3/2^+ 5/2^+)$	899.0.3	74 11	1483.26	$(5/2^+)$				
2302.12	(3/2 ,3/2)	1302.64	100 11	1078.98	$5/2^{-}$				
		1744.5 4	44 7	637.90	3/2-				
2396.4		1214.8 <i>3</i>	100	1181.55	$(13/2)^+$				
2455.05	$(9/2^{-}, 11/2^{-})$	340.4 4	8.7 22	2114.84	$(9/2^{-}, 11/2^{-})$				
		1433.81 15	15 2	1020.83	$(9/2, 11/2, 13/2)^+$				
		1467.54 10	69 <i>3</i>	987.69	$(9/2)^+$				
		2455.00 10	100 9	0.0	9/2+				
2472.71	$(1/2^+, 3/2^+, 5/2^+)$	1834.79 10	100	637.90	3/2-			0 60 75	
2477.61	$(11/2^{-}, 13/2^{-})$	112.74 <i>10</i>	52 4	2364.87	$(11/2^{-})$	M1+E2	+0.76 + 55 - 43	0.60 18	α (K)=0.48 <i>13</i> ; α (L)=0.10 <i>5</i> ; α (M)=0.019

 $^{121}_{49}\text{In}_{72}\text{-}6$

From ENSDF

		tinued)	mmas (con	dopted Levels, Ga	A				
			ontinued)	$\gamma(^{121}\text{In})$ (c					
Comments		α &	Mult. [@]	J_f^π	E_f	$I_{\gamma}^{\#}$	E_{γ}^{\dagger}	J_i^π	E _i (level)
0035 15	9; α (N+)=0.0035 1			¥					
$\alpha(0) = 0.00016.5$	$\alpha(N) = 0.0034 \ 15; \ \alpha(O) =$			$(11/2^{-})$	2292.00	15 5	185.6 <i>3</i>	$(11/2^{-}, 13/2^{-})$	2477.61
				$(11/2^{-})$	2160.09	21 5	317.4 4		
				$(11/2^{-})$ $(0/2^{+})$	2059.39	11 3	418.2 8		
				$(9/2^{+})$ $(13/2)^{+}$	1407.99	27.6	1009.49 10		
				$(9/2,11/2,13/2)^+$	1020.83	88 5	1456.90 10		
				$(5/2)^+$	1040.33	42 4	1451.20 15	$(1/2^+, 3/2^+, 5/2^+)$	2491.81
				$(3/2^+)$	987.17	14 4	1504.6 8		
				3/2-	637.90	100 9	1854.02 10		2502 76
				$(9/2)^+$	1304.02 987.69	90 13	1515 8 2		2303.70
				$(9/2^+)$	1407.99	11 4	1102.9 6	$(9/2^{-}, 11/2^{-})$	2510.78
				9/2+	0.0	100 7	2510.75 10		
				$(5/2^+)$	1483.26	35 12	1039.9 8	$(3/2^+, 5/2^+)$	2523.22
				$(1/2^+)$	1197.34	30 7	1325.9 5		
				$\frac{3}{2}$	637.90	19 5	1444.2 5		
				$3/2^{-}$	637.90	100 /8	1900.9 2		2538.82
				$(11/2^{-})$	2059.39	17 6	502.9 6	$(11/2^{-})$	2562.36
				$(13/2)^+$	1181.55	10 3	1380.9 8		
				$9/2^+$	0.0	100 6	2562.33 10	(11/2 - 12/2 -)	2591 20
				(11/2) $(15/2^{-})$	2292.00	15 2	289.43 13 447.08 10	(11/2 ,15/2)	2581.39
				$(9/2^+)$	1407.99	20.3	1174.1.3		
				$(13/2)^+$	1181.55	14 2	1399.9 2		
				$(5/2^+)$	1483.26	100 35	1128.6 8	$(1/2^+, 3/2^+, 5/2^+)$	2611.73
				3/2-	637.90	95 10	1973.8 2		
	E_{γ} : x <60.			$(15/2^{-})$	2134.20		x+	$(17/2^{-})$	2134.20+x
	E_{γ} : y <60.			$(15/2^{-})$	2134.20		У 4	$(19/2^{-})$	2134.20+y
				$(19/2^{-})$	2134.20+y		169∓	$(21/2^{-})$	2303.0+y
				(19/2 ⁻)	2134.20+y		214	$(21/2^+)$	2348.0+y
3 α(L)=0.341 5; α(M)=0.0687 10; 22 18 7; α(O)=0.000431 6	B(E2)(W.u.)=1.8 <i>3</i> α(K)=1.179 <i>17</i> ; α(L)= α(N+)=0.01222 <i>18</i> α(N)=0.01179 <i>17</i> ; α(O	1.601	[E2]	(21/2 ⁺)	2348.0+y		99 [‡]	(25/2 ⁺)	2447.0+y
				$(21/2^{-})$	2303.0+y		361‡	$(23/2^{-})$	2664.0+y
				$(23/2^{-})$	2664.0+y		110‡	$(25/2^{-})$	2774.0+y
				(01/0+)	0240.0		454		2002.0

7

L

$\gamma(^{121}$ In) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$
3347.0+y 3890.0+y	(27/2 ⁻) (29/2 ⁻)	573 [‡] 543 [‡] 1116 [‡]	2774.0+y 3347.0+y 2774.0+y	(25/2 ⁻) (27/2 ⁻) (25/2 ⁻)

[†] From ¹²¹Cd β^- decay (13.5 s, 8.3 s), except as noted. [‡] From ²³⁸U(¹²C,X γ). [#] From ¹²¹Cd β^- decay (13.5 s, 8.3 s); multiply placed γ 's are divided based on coincidence measurements. [@] From α (K)exp in ¹²¹Cd β^- decay (13.5 s, 8.3 s). [&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Level Scheme

Intensities: Relative photon branching from each level

 $^{121}_{49} \mathrm{In}_{72}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{121}_{\ 49} In_{72}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{121}_{49}\mathrm{In}_{72}$

¹²¹₄₉In₇₂