$^{121}\mathrm{Ag}\,\beta^{-}$ decay 1982Fo10,1982Al29

-		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Ohya	NDS 111, 1619 (2010)	20-Jan-2009

Parent: ¹²¹Ag: E=0.0; $J^{\pi}=(7/2^+)$; $T_{1/2}=0.78 \text{ s } 2$; $Q(\beta^-)=6670 \ 85$; $\%\beta^-$ decay=100.0 1982Fo10: ²³⁵U(n,F), isotope separator, γ , ce, $\gamma\gamma$, $\beta\gamma$ (t). 1982A129: ²³⁵U(n,F), isotope separator, E(β) from $\beta\gamma$.

¹²¹Cd Levels

E(level) [†]	J ^{π‡}	T _{1/2}	Comments
0.0	$(3/2^+)$	13.5 s 3	
7.52 11	$(1/2^+)$		
214.90 15	$(11/2^{-})$	8.3 s 8	E(level): deduced from γ -cascade relations at 744.75-, 1510.45-, 1812.03-keV levels; E=70 <i>170</i> was deduced from observed Q(β^-) value (1982Fo10).
314.50 6	$(5/2^+, 7/2^+)$	19 ns 2	$T_{1/2}$: from $\beta\gamma(t)$ in ¹²¹ Ag β^- decay.
329.95 14	$(9/2^{-}, 11/2^{-})$	<2 ns	$T_{1/2}$: from $\beta\gamma(t)$ in ¹²¹ Ag β^- decay.
353.48 6	$(5/2^+, 7/2^+)$		
369.35 7	$(5/2^+)$		
500.60 7	$(5/2^+, 7/2^+)$		
508.42 14	$(7/2^{-}, 9/2)$	<2 ns	$T_{1/2}$: from $\beta \gamma(t)$ in ¹²¹ Ag β^- decay.
602.55 10			
725.44 9			
744.75 10			
880.12 15	$(7/2^{-}, 9/2)$		
936.47 10			
989.48 <i>13</i>			
1071.13 9	$(5/2^+)$		
1095.86 22			
1118.09 12			
1170.70 7	$(5/2^+,7/2^+)$		
1191.60 22			
1208.04 14			
1233.85 17			
1241.12 24			
1243.38 21			
1249.32 17	$(7/2^{-} 0/2)$		
1341.13 24	(7/2,9/2)		
1400 7 3			
1510.45.6	$(5/2^+ 7/2^+)$		
1516 34 13	(3/2 ,//2)		
1617.59 22			
1685.56 9	$(5/2^+, 7/2^+)$		
1812.03 12	$(5/2^+, 7/2^+)$		
1823.6 6			
1841.3 5			
1908.26 22			
1925.5 <i>3</i>			
1988.78 22			
2100.9 4			
2134.02 21			
2162.7 3			
2165.66 14	$(5/2^+, 7/2^+)$		
2327.9 3			
2405.2 3			
2416.3 8			

121 Ag β^- decay 1982Fo10,1982Al29 (continued)

¹²¹Cd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]
2443.8 5		2797.95 19	$(5/2^+, 7/2^+, 9/2^+)$	2946.8 5
2518.32 15	$(5/2^+, 7/2^+)$	2825.25 22	$(5/2^+, 7/2^+)$	3015.2 5
2676.2 3		2872.67 23	$(5/2^+, 7/2^+, 9/2^+)$	3048.2 5
2717.5 5		2881.3 <i>3</i>	$(5/2^+, 7/2^+)$	

 † E(levels) are based on a least-squares fit to E($\gamma's).$ ‡ From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(3.62 \times 10^3 \ 9)$	3048.2	0.26 7	6.14 13	av E β =1542 41
$(3.65 \times 10^3 \ 9)$	3015.2	0.16 7	6.37 20	av E β =1557 41
$(3.72 \times 10^3 \ 9)$	2946.8	0.19 7	6.33 17	av E β =1590 41
$(3.79 \times 10^3 \ 9)$	2881.3	1.75 11	5.39 6	av E β =1621 41
$(3.80 \times 10^3 \ 9)$	2872.67	0.96 7	5.66 6	av E β =1625 41
$(3.84 \times 10^3 \ 9)$	2825.25	1.12 11	5.62 6	av E β =1647 41
$(3.87 \times 10^3 \ 9)$	2797.95	1.41 12	5.53 6	av E β =1660 41
$(3.95 \times 10^3 \ 9)$	2717.5	0.11 4	6.68 17	av E β =1698 41
$(3.99 \times 10^3 \ 9)$	2676.2	0.40 7	6.13 9	av E β =1718 41
$(4.15 \times 10^3 \ 9)$	2518.32	2.78 14	5.37 5	av E β =1793 41
				E(β)=3850 240 (sum of E(β) spectra in coin with 2518γ, 2204γ) (1982Al29).
$(4.23 \times 10^3 \ 9)$	2443.8	0.16 7	6.64 20	av E β =1828 41
$(4.25 \times 10^3 \ 9)$	2416.3	0.48 16	6.17 15	av E β =1841 41
$(4.26 \times 10^3 \ 9)$	2405.2	0.32 7	6.36 11	av E β =1846 41
$(4.34 \times 10^3 \ 9)$	2327.9	0.19 7	6.62 17	av E β =1883 41
$(4.50 \times 10^3 \ 9)$	2165.66	1.06 15	5.94 8	av E β =1960 41
$(4.51 \times 10^3 \ 9)$	2162.7	0.32 7	6.46 11	av E β =1961 41
$(4.54 \times 10^3 \ 9)$	2134.02	0.67 10	6.15 8	av E β =1975 41
$(4.57 \times 10^3 \ 9)$	2100.9	0.42 7	6.37 9	av E β =1991 41
$(4.68 \times 10^3 \ 9)$	1988.78	0.55 7	6.30 7	av E β =2044 41
$(4.74 \times 10^3 \ 9)$	1925.5	0.29 7	6.60 11	av E β =2074 41
$(4.76 \times 10^3 \ 9)$	1908.26	0.58 7	6.31 7	av E β =2082 41
$(4.83 \times 10^3 \ 9)$	1841.3	0.22 10	6.76 20	av E β =2114 41
$(4.85 \times 10^3 \ 9)$	1823.6	0.32 13	6.60 18	av E β =2123 41
$(4.86 \times 10^3 \ 9)$	1812.03	2.69 18	5.68 5	av E β =2128 41
$(4.98 \times 10^3 \ 9)$	1685.56	3.36 19	5.63 5	av E β =2188 41
$(5.05 \times 10^3 \ 9)$	1617.59	0.22 7	6.84 15	av E β =2221 41
$(5.15 \times 10^3 \ 9)$	1516.34	0.51 7	6.51 7	av E β =2269 41
$(5.16 \times 10^3 \ 9)$	1510.45	19.6 7	4.93 4	av E β =2272 41
				$E(\beta) = 4920 \ I90 \ \text{from } \beta \gamma \ (1982 \text{Al} 29).$
$(5.27 \times 10^3 \ 9)$	1400.7	0.29 7	6.80 11	av $E\beta = 2324 4I$
$(5.33 \times 10^3 \ 9)$	1341.13	0.54 8	6.55 8	av E β =2352 41
$(5.42 \times 10^{5} 9)$	1249.32	1.06 7	6.29 5	av E β =2396 41
$(5.43 \times 10^3 \ 9)$	1243.58	0.26 7	6.91 13	av E β =2398 41
$(5.43 \times 10^3 \ 9)$	1241.12	0.54 7	6.59 7	av E β =2400 41
$(5.44 \times 10^{3} 9)$	1233.85	0.96 7	6.34 5	av E β =2403 41
$(5.46 \times 10^3 \ 9)$	1208.04	0.96 20	6.35 10	av E β =2415 41
$(5.48 \times 10^3 9)$	1191.60	0.45 10	6.69 11	av E β =2423 41
$(5.50 \times 10^3 \ 9)$	1170.70	9.2.4	5.38 4	av $B\beta = 2433 41$
				$E(\beta)=5200, 240$ (weighted average of $E(\beta', s)$ in coin with $801\gamma, 81/\gamma, 856\gamma$)

Continued on next page (footnotes at end of table)

¹²¹Ag β^- decay 1982Fo10,1982Al29 (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
				(1982Al29).
$(5.55 \times 10^3 \ 9)$	1118.09	0.64 7	6.56 6	av E β =2458 41
$(5.57 \times 10^3 \ 9)$	1095.86	0.51 7	6.67 7	av E β =2469 41
$(5.60 \times 10^3 \ 9)$	1071.13	2.59 18	5.97 5	av E β =2481 41
$(5.68 \times 10^3 \ 9)$	989.48	1.34 14	6.28 6	av E <i>β</i> =2519 <i>41</i>
$(5.73 \times 10^3 \ 9)$	936.47	0.45 25	6.77 25	av Eβ=2545 41
$(5.79 \times 10^3 \ 9)$	880.12	1.89 <i>21</i>	6.17 6	av Eβ=2571 41
$(5.93 \times 10^3 \ 9)$	744.75	3.94 <i>23</i>	5.90 4	av E <i>β</i> =2636 <i>41</i>
				$E(\beta)=5540\ 650\ (coin\ with\ 430\gamma)\ (1982A129).$
$(5.94 \times 10^3 \ 9)$	725.44	2.4 4	6.12 8	av E <i>β</i> =2645 <i>41</i>
$(6.07 \times 10^3 \ 9)$	602.55	0.67 15	6.71 11	av E β =2704 41
$(6.16 \times 10^3 \ 9)$	508.42	3.3 4	6.05 6	av E β =2748 41
$(6.17 \times 10^3 \ 9)$	500.60	5.8 7	5.81 6	av E β =2752 41
$(6.30 \times 10^3 \ 9)$	369.35	3.3 4	6.09 6	av E <i>β</i> =2815 <i>41</i>
$(6.32 \times 10^3 \ 9)$	353.48	2.7 11	6.18 18	av E <i>β</i> =2822 41
$(6.36 \times 10^3 \ 9)$	314.50	15.1 11	5.45 5	av Eβ=2841 41

[†] Absolute intensity per 100 decays.

From ENSDF

 $\gamma(^{121}\mathrm{Cd})$

I γ normalization: from I(γ +ce to g.s. +7.52 level + 214.89 level)=100, assuming no β^- to g.s. and 7.52 level (2nd forbidden) or 214.89 level (1U β^-) (1982Fo10).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α [@]	$I_{(\gamma+ce)}^{\#}$	Comments
7.52 11		7.52	(1/2+)	0.0	(3/2+)	[M1,E2]		15.7 6	α: α =127 6 for M1, 9.90×10 ⁴ 8 for E2. E _γ : deduced from the level scheme. I _(γ+ce) : from an intensity balance at the 7.52 level.
$x^{x}17.62 10$	1.0 4								
115.02 <i>10</i>	17.1 11	329.95	(9/2 ⁻ ,11/2 ⁻)	214.90	(11/2 ⁻)	M1	0.313		α (K)=0.271 4; α (L)=0.0339 5; α (M)=0.00651 10; α (N+)=0.001226 18 α (N)=0.001160 17; α (O)=6.62×10 ⁻⁵ 10 α (K)exp=0 23 3
147.10 10	0.70 8	500.60	$(5/2^+, 7/2^+)$	353.48	$(5/2^+, 7/2^+)$				a(ii)onp 0.20 0.
178.47 <i>10</i> x204.4 6	10.4 8 0.11 <i>3</i>	508.42	(7/2 ⁻ ,9/2)	329.95	(9/2 ⁻ ,11/2 ⁻)	D			α (K)exp<0.10.
293.47 10	7.3 4	508.42	(7/2 ⁻ ,9/2)	214.90	(11/2 ⁻)	[E2]	0.0349		$\alpha(\mathbf{K})=0.0296 5; \ \alpha(\mathbf{L})=0.00435 7; \ \alpha(\mathbf{M})=0.000844$ $I2; \ \alpha(\mathbf{N}+)=0.0001529 22$ $\alpha(\mathbf{N})=0.0001465 2I; \ \alpha(\mathbf{O})=6.41\times10^{-6} 0$
314.55 10	100 <i>3</i>	314.50	(5/2 ⁺ ,7/2 ⁺)	0.0	(3/2+)	(E2)	0.0278		$\alpha(N)=0.0001405\ 21;\ \alpha(O)=0.41\times10^{-6}\ 9$ $\alpha(K)=0.0236\ 4;\ \alpha(L)=0.00341\ 5;\ \alpha(M)=0.000661$ $10;\ \alpha(N+)=0.0001200\ 17$ $\alpha(N)=0.0001149\ 17;\ \alpha(O)=5.16\times10^{-6}\ 8$ M1,E2 from $\alpha(K)$ exp=0.018 4. Decay scheme requires $\Delta J=2$.
^x 320.37 20	0.93 10								
345.64 <i>10</i> 353.43 <i>10</i>	1.6 2 62 3	1516.34 353.48	(5/2+,7/2+)	1170.70 0.0	$(5/2^+,7/2^+)$ $(3/2^+)$	M1,E2	0.0174 <i>18</i>		$ α(K)=0.0150 \ 14; \ α(L)=0.0020 \ 4; \ α(M)=0.00038 \ 7; α(N+)=7.0×10-5 \ 11 α(N)=6.7×10-5 \ 11; \ α(O)=3.45×10-6 \ 16 Mult.: from α(K)exp=0.016 \ 4; α: for δ=1.0, uncertainty chosen to overlap M1, E2 $
361.88 10	12.1 5	369.35	(5/2+)	7.52	(1/2+)	[E2]	0.01771		theory values. $\alpha(K)=0.01511\ 22;\ \alpha(L)=0.00211\ 3;\ \alpha(M)=0.000408$ $6;\ \alpha(N+)=7.46\times10^{-5}\ 11$ $\alpha(N)=7.12\times10^{-5}\ 10;\ \alpha(O)=3.35\times10^{-6}\ 5$
x365.66 22	0.51 10								
369.33 ^{&} 10	17.4 ^{&} 6	369.35	(5/2 ⁺)	0.0	(3/2 ⁺)	[M1,E2]	0.0153 13		$\alpha(K)=0.0132 \ 10; \ \alpha(L)=0.00172 \ 25; \ \alpha(M)=0.00033$ 5; \ \alpha(M)=5.2×10 ⁻⁵ \ 9 \ \alpha(N)=5.9×10 ⁻⁵ \ 8; \ \alpha(Q)=3.05×10 ⁻⁶ \ 11
369.33 <mark>&</mark> 10	1.5 <mark>&</mark> 1	1249.32		880.12	$(7/2^{-}.9/2)$				a(1), 55/10 0, a(0)-5.05/10 11
371.82 ^{&} 10	10.3 ^{&} 5	725.44		353.48	$(5/2^+, 7/2^+)$				

				121 Ag β^- decay	1982Fo10,198	2Al29 (conti	inued)			
					$\gamma(^{121}\text{Cd})$ (continue	ed)				
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$
371.82 ^{&} 10	0.5	880.12	$(7/2^{-}.9/2)$	508.42 $(7/2^{-}.9/2)$	900.1.3	0.9.2	1400.7		500.60	$(5/2^+, 7/2^+)$
415.00.20	2.0.2	744.75	('/= ','/=)	$329.95 (9/2^-, 11/2^-)$	943.5.5	1.0 4	1823.6		880.12	$(7/2^{-},9/2)$
430.32 10	12.7.5	744.75		$314.50 (5/2^+, 7/2^+)$	1002.10.20	2.0 2	1510.45	$(5/2^+, 7/2^+)$	508.42	$(7/2^{-}, 9/2)$
435.85 10	6.1 4	936.47		$500.60 (5/2^+, 7/2^+)$	1011.10 20	1.3 2	1341.13	$(7/2^{-}, 9/2)$	329.95	$(9/2^{-}, 11/2^{-})$
439.08 15	2.3 3	1510.45	$(5/2^+, 7/2^+)$	1071.13 (5/2+)	1063.50 15	3.4 3	1071.13	$(5/2^+)$	7.52	$(1/2^+)$
440.85 15	2.7 3	1812.03	$(5/2^+, 7/2^+)$	1371.03	1086.1 4	0.42 10	1812.03	$(5/2^+, 7/2^+)$	725.44	., ,
443.9 <i>4</i>	0.63 15	1170.70	$(5/2^+, 7/2^+)$	725.44	^x 1092.7 5	0.7 2				
^x 451.50 20	1.0 2				1096.5 5	0.7 3	1841.3		744.75	
^x 493.0 3	0.3 1				^x 1107.0 3	0.64 10				
500.61 10	29 2	500.60	$(5/2^+, 7/2^+)$	$0.0 (3/2^+)$	1126.7 5	0.39 10	1341.13	$(7/2^{-}, 9/2)$	214.90	$(11/2^{-})$
550.10 10	5.8 4	880.12	$(7/2^-, 9/2)$	329.95 (9/2-,11/2-)	^x 1137.6 7	1.5 5				
582.88 20	2.9 4	936.47		353.48 (5/2+,7/2+)	1157.07 10	11.1 5	1510.45	$(5/2^+, 7/2^+)$	353.48	$(5/2^+, 7/2^+)$
^x 592.9 7	1.0 3				1170.94 15	7.16	1170.70	$(5/2^+, 7/2^+)$	0.0	$(3/2^+)$
602.57 10	5.4 4	602.55		$0.0 (3/2^+)$	1195.93 10	21.0 10	1510.45	$(5/2^+, 7/2^+)$	314.50	$(5/2^+, 7/2^+)$
605.51 10	3.3 2	1208.04		602.55	1208.3 7	1.5 5	2416.3		1208.04	
620.31 20	2.2 3	989.48		369.35 (5/2 ⁺)	1263.4 <i>3</i>	1.1 2	1988.78		725.44	
635.90 15	2.0 3	989.48		$353.48 \ (5/2^+, 7/2^+)$	^x 1266.8 4	2.0 3				
665.8 <i>3</i>	2.1 3	880.12	$(7/2^{-}, 9/2)$	214.90 (11/2 ⁻)	^x 1301.30 20	1.3 2				
691.0 2	1.4 3	1191.60		$500.60 \ (5/2^+, 7/2^+)$	1332.14 10	5.0 4	1685.56	$(5/2^+, 7/2^+)$	353.48	$(5/2^+, 7/2^+)$
701.4 3	1.6 2	1071.13	$(5/2^+)$	$369.35(5/2^+)$	1371.07 10	4.2 3	1685.56	$(5/2^+, 7/2^+)$	314.50	$(5/2^+, 7/2^+)$
*/15.00 20	2.0 2				1424.9 3	0.9 2	1925.5		500.60	$(5/2^+, 7/2^+)$
717.64 10	5.4 3	10/1.13	$(5/2^+)$	$353.48 (5/2^+, 7/2^+)$	1443.1 3	2.1 2	1812.03	$(5/2^+, 7/2^+)$	369.35	$(5/2^+)$
725.50 20	6.3 6	725.44		$0.0 (3/2^+)$	1510.47 10	18.5 15	1510.45	$(5/2^+, 7/2^+)$	0.0	$(3/2^{+})$
726.51 20	1.6 2	1095.86		369.35 (5/21)	x1532.2 4	2.1 3				
732.70.20	1./2	1241.12		508.42 (7/2, 9/2)	*1534.2.4	0.43 10	1009.26		260.25	(5/2+)
740.40 20	1.8 2	1249.32		508.42 (1/2, 9/2)	1538.90 20	1.8 2	1908.20		309.33	$(5/2^{+})$
744.10 20	0.8 2	1695 56	(5/2+7/2+)	$0.0 (3/2^{+})$	¹ 1548./ 5	2.0 2				
748.8 J 765 5 5	0.85	1085.30	$(5/2^+, 7/2^+)$	930.47	×1660 4 4	$0.00\ 10$				
705.5 5	0.42	1510.45	(3/2, 7/2) (5/2+7/2+)	744.75	x1674.5.4	0.9 2				
801 35 10	5.03	1170.70	$(5/2^+,7/2^+)$	723.44 360 35 (5/2 ⁺)	1684 5 4	0.40 10	1685 56	(5/2+7/2+)	0.0	$(3/2^{+})$
803 58 10	2.0.2	1118.00	(3/2 ,7/2)	$31450(5/2^+ 7/2^+)$	x1710 5 3	0.50 10	1005.50	(3/2 ,7/2)	0.0	(3/2)
^x 806.6.5	103	1110.09		514.50 (5/2 ,7/2)	x1717.1.3	0.49 10				
x813.2.4	1.0.5				x1725.9.3	0.60.10				
817 24 10	12.5.6	1170 70	$(5/2^+, 7/2^+)$	$353.48 (5/2^+ 7/2^+)$	x1746 3 5	0.26.8				
837.6 7	1.2.3	1208.04	(3/2 ,//2)	$369.35(5/2^+)$	1770.9.3	1.3.2	2100.9		329.95	$(9/2^{-}, 11/2^{-})$
856.06 15	5.0.4	1170.70	$(5/2^+, 7/2^+)$	$314.50 (5/2^+, 7/2^+)$	^x 1804.7.3	1.0.2	210000		02000	()/= ,11/=)
862.45 15	2.7 2	1371.03	(0/2 ,//2)	508.42 $(7/2^-, 9/2)$	1809.2.3	1.0 2	2162.7		353.48	$(5/2^+, 7/2^+)$
864 50 15	3.0.2	1233.85		$369.35(5/2^+)$	1812 13 18 15	3 2 2 1	1812.03	$(5/2^+, 7/2^+)$	0.0	$(3/2^+)$
x000.2.2	0.0.2	1200.00		507.55 (5/2)	1012.13 15	2.2 +	2165 66	(5/2, 7/2)	252 10	(5/2)
800.10.20	0.92	12/2 50		353 18 (5/0+ 7/0+)	1810.50.20	$2.0^{-2} 4$	2103.00	$(3/2^{+}, 7/2^{+})$	314 50	$(5/2^+, 7/2^+)$
802 15 20	0.02	1243.30 1617 50		555.40 (5/2,1/2)	1017.30 20	2.13	2134.02		500.60	(3/2, 7/2) (5/2+7/2+)
092.15 20	0.7 2	101/.37		123.77	1021.3 3	0.0 2	4341.7		500.00	(J_{12}, J_{12})

From ENSDF

$\gamma(^{121}Cd)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	J_i^π	E_f	J_f^π
^x 1844.90 20	1.4.2					2483.8.3	1.4.2	2797.95	$(5/2^+, 7/2^+, 9/2^+)$	314.50	$(5/2^+, 7/2^+)$
1861.30 20	3.0 3	2797.95	$(5/2^+, 7/2^+, 9/2^+)$	936.47		2518.3 3	2.3 2	2518.32	$(5/2^+, 7/2^+)$	0.0	$(3/2^+)$
1889.2 4	0.8 2	2825.25	$(5/2^+, 7/2^+)$	936.47		x2526.0 4	0.42 10				
1936.19 20	3.0 2	2872.67	$(5/2^+, 7/2^+, 9/2^+)$	936.47		2577.4 5	0.6 2	2946.8		369.35	$(5/2^+)$
^x 1943.9 4	0.88 10					x2585.2 3	0.72 10				
^x 1957.8 3	1.6 2					^x 2620.0 4	0.6 2				
1988.7 <i>3</i>	0.63 8	1988.78		0.0	$(3/2^+)$	x2628.0 5	0.4 2				
2017.9 <i>3</i>	1.4 2	2518.32	$(5/2^+, 7/2^+)$	500.60	$(5/2^+, 7/2^+)$	^x 2637.0 4	0.5 2				
2080.3 <i>3</i>	2.1 2	2825.25	$(5/2^+, 7/2^+)$	744.75		2645.8 5	0.5 2	3015.2		369.35	$(5/2^+)$
2090.7 <i>3</i>	1.0 2	2405.2		314.50	$(5/2^+, 7/2^+)$	^x 2663.8 4	0.40 8				
2129.3 5	0.5 2	2443.8		314.50	$(5/2^+, 7/2^+)$	2676.4 6	0.26 8	2676.2		0.0	$(3/2^+)$
^x 2134.8 6	0.31 10					^x 2685.8 5	0.5 2				
2156.5 5	0.48 15	2881.3	$(5/2^+, 7/2^+)$	725.44		2733.7 5	0.8 2	3048.2		314.50	$(5/2^+, 7/2^+)$
2165.8 <i>3</i>	1.3 2	2165.66	$(5/2^+, 7/2^+)$	0.0	$(3/2^+)$	2825.1 4	0.6 2	2825.25	$(5/2^+, 7/2^+)$	0.0	$(3/2^+)$
2203.70 20	5.0 3	2518.32	$(5/2^+, 7/2^+)$	314.50	$(5/2^+, 7/2^+)$	^x 2835.1 5	0.30 10				
2216.9 5	0.35 10	2717.5		500.60	$(5/2^+, 7/2^+)$	^x 2868.5 4	1.3 2				
2322.6 3	1.0 2	2676.2		353.48	$(5/2^+, 7/2^+)$	2881.0 <i>3</i>	5.0 3	2881.3	$(5/2^+, 7/2^+)$	0.0	$(3/2^+)$
^x 2394.0 4	0.21 5					^x 2898.9 6	0.19 5				
^x 2434.9 4	0.8 2					^x 3128.4 6	0.21 5				
^x 2464.3 4	0.42 8										

[†] From 1982Fo10.
[‡] From α(K)exp.
[#] For absolute intensity per 100 decays, multiply by 0.321 7.
[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

¹²¹Ag β^- decay 1982Fo10,1982Al29

 $^{121}_{48}\mathrm{Cd}_{73}$

7

¹²¹Ag β^- decay 1982Fo10,1982Al29

Decay Scheme (continued)

 $^{121}_{\ 48}\text{Cd}_{73}$

8

¹²¹Ag β^- decay 1982Fo10,1982Al29

Decay Scheme (continued)

