				History				
	Тур	pe		Author	Citation	Literature Cutoff Date		
	Full Eva	luation K. K	itao, Y. T	endow and A. Hashizume	NDS 96,241 (2002)	1-Dec-2001		
$Q(\beta^{-}) = -8284$ Note: Current	<i>16</i> ; S(n)=114 evaluation ha	449 16 ; S(p)=5 as used the following states as the following states as the following states as the following states are	.70×10 ³ 3 owing Q 1	$\begin{array}{l} \text{3; } \mathbf{Q}(\alpha) = 6.7 \times 10^2 \ 3 \qquad \textbf{2012} \\ \text{record} \ -7942 \qquad 4511.24 \text{E3} \end{array}$	Wa38 3 13 5453 771051	102 1995Au04.		
				¹²⁰ Xe Levels				
				Cross Reference (XRE	EF) Flags			
				$\begin{array}{l} \mathbf{A} \\ \mathbf{B} \end{array} \begin{array}{c} 120 \text{Cs } \varepsilon \text{ decay (6-1)} \\ \text{Cs } \varepsilon \text{ decay (6-1)} \\ (\text{HI},\text{xn}\gamma) \end{array}$	4 s+57 s)			
E(level) ^d	J <i>πе</i>	$T_{1/2}f$	XREF		Comments			
0.0 ^b	0+	40 min <i>1</i>	AB	$\% \varepsilon + \% \beta^+ = 100$ T _{1/2} : from 1965An05. Ot (1974Mu10).	thers: 43 min 3 (1965)	Bu03), 39.5 min 20		
322.61 ^b 4	2+	45.7 ps 20	AB	J ^{π} : E2 γ to 0 ⁺ . T _{1/2} : value from weighter 1995Wa25), 44.4 ps 35 values are based on RE Others: 86 ps 10 (1972 (1985ChZY): these values	d av of 52.0 ps 49 (fro (1995Wa25), and 44.4 DM, except for 1995Wa Ku14), 84 ps 8 (1980) ues based on RDM are	m A. Dewald as quoted by 4 ps 28 (1996Ma16); these a25 ($\gamma\gamma$ (t) in ¹²⁰ Cs ε decay). (aZT), and 84 ps 18 c in error due to an incorrect		
796.16 ^b 4	4+	5.8 ps 4	AB	treatment of side feedin J^{π} : E2 γ to 2 ⁺ . $T_{1/2}$: based on RDM in ((1972Ku14), 6.0 ps 6 (ng (1995Wa25). HI,xn γ). Value from w from A. Dewald as que	veighted av of 6.1 ps <i>12</i> oted by 1995Wa25), and 5.6 ps		
976 10 <mark>9</mark> 4	2+		AD	(1995 Wa25). Other: 7.0	5 ps 9 (1980KaZT).			
$8/0.10^{-4}$	$^{2}_{0^{+}}$	< 6.2 ps		J^{π} : E2 γ to 0 . J^{π} : E0 transition to 0 ⁺				
200.70 5	0	<0.2 ps	n	T _{1/2} : from $\gamma\gamma(t)$ in ¹²⁰ Cs	e decay (1996Ma16)			
1271.70 ^a 4	3+		AB	J^{π} : stretched D to 2 ⁺ . M2	$2(+M1) \gamma$ to 2^+ , γ to 4	+.		
1274.43 ^c 4	$(2)^{+}$		Α	J^{π} : (E2) γ to 0 ⁺ , M1, E2	y to $\pi = +$.			
1397.33 ^b 6	6+	1.73 ps 25	AB	J ^π : E2 γ to 4 ⁺ . T _{1/2} : based on RDM, val 2.1 ps 7 (1980KaZT), a 1995Wa25), 1.42 ps +4	ue is from 1995Wa25. and 1.0 to 2.0 ps (from 45–28 (2000Pa63).	Others: <3.5 ps (1972Ku14), A. Dewald as quoted by		
1401.34 ^a 5	4+		AB	J^{π} : E2 γ to 2 ⁺ , γ to 4 ⁺ .				
1623.25 5	0+	83 ps 28	A	J^{π} : E0 transition to 0 ⁺ . T _{1/2} : from 1996Ma16 bas (1992Bh02).	sed on RDM. Other: 6	00 ns 21 from $(\beta)(ce)(t)$		
1711.75 ^c 5 1725.40 5	$(4)^+$ 2 ⁺	0.6 ns 5	A A	J ^{π} : M1+E2+E0 γ to 4 ⁺ , γ J ^{π} : M1+E2+E0 γ to 2 ⁺ .	γ to 6 ⁺ , (E2) γ to (2) ⁺			
	_			$T_{1/2}$: from $(\beta)(ce)(t)$ (199	2Bh02).			
1745.31 7	+		Α	J^{π} : M1,E2 γ to π =+.				
1767.54 6	$(2^+,3,4^+)$		A	J^{π} : γ 's to 2 ⁺ and 4 ⁺ .	-1			
1816.98" 5	$(5)^{+}$		AB	J ^{π} : M1,E2 γ to 4 ⁺ , γ to 6)'.			
1924.11.0	2+ 2+		A A	J^{π} : γ to 4 ⁺ , γ from 0 ⁺ .	$F_{2}^{2} \approx t_{0}^{2} (3)^{+}$			
1982.49 11	(1.2^+)		Â	J^{π} : γ' s to 0 ⁺ and 2 ⁺ .	$, D = \gamma (0 (3))$.			
1985.63 ^{<i>a</i>} 6	6+		AB	J^{π} : M1,E2 γ to 4 ⁺ , E2 γ	to 4 ⁺ .			
1995.07 6	2		Α	J^{π} : γ 's to 0^+ and 4^+ .				
2050.56 7	$(2^+,3,4^+)$		Α	J^{π} : γ 's to 2 ⁺ and 4 ⁺ .				
2071.99 6	4+		Α	J ^{μ} : E2(+M1) γ to 3 ⁺ , γ 's	to 2^+ and 6^+ .			

Continued on next page (footnotes at end of table)

¹²⁰Xe Levels (continued)

E(level) ^d	J ^π <i>e</i>	$T_{1/2}f$	XREF	Comments
2072.7 8			В	
2099.20 ^b 8	8+	0.97 ps 17	AB	J ^π : E2 γ to 6 ⁺ . T _{1/2} : weighted av of 0.91 ps <i>17</i> from DSA (2000Pa63) and 1.3 ps <i>4</i> from RDM (1987Ha17), in (HI,xnγ). Others: <1.4 ps (1980KaZT), <1.80 ps 21 (1995Wa25).
2165.16 6	$(2^+, 3, 4^+)$		Α	J^{π} : γ' s to 2 ⁺ and 4 ⁺ .
2186.80 6	(2,3,4)		Α	J^{π} : γ 's to 2 ⁺ and (4) ⁺ .
2236.65 15	0^+		A	J^{n} : E0 transition to 0^{+} g.s.
2242.13 7	(A - F -)		A	$T_{T_{1}}^{T_{1}}$ (D1) (4)+ (5)+
22/2.68 /	(4,5)		A	J^{*} : (E1) γ to (4), γ to (5).
2295.10 9	$(1 2)^+$		A	I^{π} , $u \neq 0, 0^+$, M1 E2 $u \neq 0, (2)^+$
2402.12 0	(1,2) 0 ⁺		A A	$J : \gamma \downarrow 0 0$; MI,E2 $\gamma \downarrow 0 (5)$. I^{π} : E0 transition to 0^+ as
2411.0 10	$(3 4)^+$		Δ	I^{π} : M1 F2 γ to (5) ⁺ : γ to (2) ⁺
$2460.88^{a}.8$	(3,1) 7 ⁺	0.62 ps + 35 - 14	AR	I^{π} : E2 γ to 5 ⁺
2405.246	(7^{-})	0.02 ps 155 17	D	$\pi : D_{2} \to 6^{+}$
2495.2* 0	(7)		A	J. D 7 10 0 .
2530.07 2	(6^{-})		AD.	π , D α to 6^+
2544.0 7	$(0^{-})^{(1^{2}+)}$		AD A	$J \cdot D \neq 0.00$. $I^{\pi} \cdot v's$ to 0^+ and 2^+
2657.5911 2653.83^{a} 12	(1,2) (8^+)		AR	J^{π} , γ to 6^+
2669.5 8	(0)		B	
2682.12 8			A	
2721.89 8	$(3,4,5)^+$		Α	J^{π} : γ' s to (3) ⁺ and (5) ⁺ , M1,E2 γ to (4,5) ⁺ .
2727.34 8	$(4^+, 5, 6^+)$		Α	J^{π} : γ' s to 4^+ and 6^+ .
2728.5 5	(6 ⁻)		В	J^{π} : D γ to (5) ⁺ , γ 's to (6 ⁻) and (6 ⁺).
2812.68 8	(4)		Α	J^{π} : γ' s to (2) ⁺ and (6 ⁺).
2830.20 10	7-		AB	J^{π} : D γ to 6 ⁺ , γ to 8 ⁺ .
2830.95 16			A	
2853.98 ⁿ 6			Α	
2872.70 ^b 13	10+	0.63 ps 10	В	J^{π} : E2 γ to 8 ⁺ . T _{1/2} : other: 0.70 ps 35 based on RDM (1987Ha17).
2912.1 8	(7-)		В	
2930.08 3	(/)		AB	J^{\prime} : D γ to 6'.
2900.77 11	(0=)		A	
2966.84 13	(8)		В	J^{A} : D γ to I^{A} , γ to (6).
2970.80+ 13	(9 ⁻)		В	J^{π} : D γ to 8^+ , γ to (7^-) .
3003.4 [#] 6	(8 ⁻)		В	J^{π} : Q γ to (6 ⁻), γ to 8 ⁺ .
3075.78 6	(8 ⁻)		В	J^{π} : γ' s to 7 ⁻ and (8 ⁻).
3149.32 [†] <i>13</i>	(9 ⁻)		В	J^{π} : Q γ to (8 ⁻), γ to 7 ⁻ .
3149.5 10			Α	
3174.11 ^{<i>a</i>} 13	9+	0.52 ps 7	В	J^{π} : E2 γ to 7 ⁺ , γ to 8 ⁺ .
3280.78 8	(9 ⁻)		В	J^{n} : γ to (9 ⁻).
3326.43 ^{^w} 16	(10^{+})		В	J^{π} : γ to (8^+) .
3357.21 7	(2^{+})		Α	J^{π} : γ 's to 0 ⁺ and 4 ⁺ .
3383.34 [†] 15	(10 ⁻)		В	J^{π} : γ' s to (8 ⁻) and (9 ⁻).
3470.91 10	(2^{+})		Α	J^{π} : γ 's to 0^+ and 4^+ .
3535.4 [#] 8	(10 ⁻)		В	J^{π} : γ' s to (8 ⁻) and (9 ⁻).
3575.3 <mark>8</mark> 9	(10 ⁻)		В	J^{π} : Q γ to (10 ⁻).
3591.69 [‡] <i>16</i>	(11 ⁻)		В	J^{π} : Q γ to (9 ⁻) and D γ to 10 ⁺ .
3648.44 [†] 15	(11 ⁻)		В	J^{π} : Q γ to (9 ⁻) and γ to (10 ⁻).
3676.51 ^b 16	12+	0.58 ps 9	В	J^{π} : E2 γ to 10 ⁺ .
3802.62 7	(2^{+})	T T	Α	γ 's to 0^+ and 4^+ .

Continued on next page (footnotes at end of table)

¹²⁰Xe Levels (continued)

E(level) ^d	J ^π ^ℓ	$T_{1/2}f$	XREF	Comments
3852.4 ^g 11	(11^{-})		В	$J^{\pi}: Q \gamma \text{ to } (11^{-}).$
3918.7 [@] 6	12+	1.2 ps +10-3	В	J^{π} : E2 γ to 10 ⁺ , D γ to 11 ⁺ .
3933.9 ^a 10	(11^{+})	0.55 ps +21-14	В	J^{π} : E2 γ to (9 ⁺).
3956.55 [†] 18	(12 ⁻)		В	J^{π} : Q γ to (10 ⁻), D γ to (11 ⁻).
4157.8 <mark>&</mark> 8	(12^{+})	0.58 ps +14-10	В	J^{π} : γ to 10^+ , D γ to 12^+ .
4167.5 [#] <i>13</i>	(12 ⁻)		В	J^{π} : Q γ to (10 ⁻), γ to (11 ⁻).
4212.5 ⁸ 9	(12^{-})		В	J^{π} : γ 's to (12 ⁻) and (11 ⁻).
4292.66 19	(13 ⁻)		В	J^{π} : γ 's to (10 ⁻) and (11 ⁻).
4306.34 6	(13 ⁻)		В	J^{π} : Q γ to (11 ⁻), γ to (11 ⁻).
4313.12 9	(2^{+})	0.40	A	$J^{\prime\prime}$: γ 's to 0^+ and 4^+ .
4458.92° 19	14^+	0.69 ps 10	В	J^{n} : E2 γ to 12 ⁺ .
4337.7811	(15)	11 ma + 5 2	D D	J^{*} : γ s to (11) and (15).
4008.4 - 7	(14^{-})	1.1 ps +3-3	D D	J^{*} : γ to 12^{-} , $D \gamma$ to 14^{-} .
4004.45 + 19 4695.9^{a} 15	(14) (13^+)	$0.87 \text{ ps} \pm 22 - 17$	B	$J^{*}: Q \gamma \text{ to } (12), D \gamma \text{ to } (13).$ $I^{\pi}: \gamma \text{ to } (11^{+})$
4846 8 7	(13^{+})	0.07 ps + 22 17 0.21 ps - 3	R	I^{π} : γ' s to 12^+ and 14^+
4888 5 [#] 17	(1+) (14^{-})	0.21 ps 5	B	I^{π} : $\Omega \propto t_{0} (12^{-})$
4938.5 ⁸ 11	(14^{-})		B	J^{π} : γ 's to (12 ⁻) and (14 ⁻).
5059.1 [†] 7	(15 ⁻)		В	J^{π} : Q γ to (13 ⁻), D γ to (14 ⁻).
5085.2 [‡] 6	(15^{-})		В	J^{π} : O γ to (13 ⁻), γ to (13 ⁻).
5232.3 ^b 9	16+	0.48 ps +15-8	В	J^{π} : E2 γ to 14 ⁺ .
5405.9 [@] 12	(16^{+})	0.45 ps + 19 - 9	В	J^{π} : E2 γ to (14 ⁺).
5479.7 [†] 8	(16 ⁻)	I	В	J^{π} : Q γ to (14 ⁻), D γ to (15 ⁻).
5636.9 <mark>&</mark> 8	(16 ⁺)	0.49 ps +21-7	В	J^{π} : E2 γ' s to 14 ⁺ and (14 ⁺).
5691.8 [#] 19	(16 ⁻)		В	J^{π} : Q γ to (14 ⁻).
5919.9 [†] 9	(17^{-})		В	J^{π} : Q γ to (15 ⁻), D γ to (16 ⁻).
5928.9 [‡] 6	(17^{-})		В	J^{π} : Q γ to (15 ⁻).
6051.0 ^b 14	18+	0.26 ps 4	В	J^{π} : E2 γ to 16 ⁺ .
6339.0 [@] 16	(18^{+})	0.22 ps 5	В	J^{π} : E2 γ to (15 ⁺).
6382.5 [†] 10	(18 ⁻)	*	В	J^{π} : Q γ to (16 ⁻), D γ to (17 ⁻).
6457.1 ^{&} 10	(18^{+})	0.22 ps +9-5	В	J^{π} : γ' s to (16 ⁺) and 16 ⁺ .
6574.5 [#] 22	(18 ⁻)	*	В	J^{π} : Q γ to (16 ⁻).
6833.5 [‡] 12	(19 ⁻)		В	$J^{\pi}: Q \gamma \text{ to } (17^{-}).$
6862.6 [†] 12	(19 ⁻)		В	J^{π} : γ' s to (18 ⁻) and (17 ⁻).
6955.4 ^b 17	20^{+}	0.12 ps 3	В	J^{π} : E2 γ to 18 ⁺ .
7320.0 [@] 19	(20^{+})	0.12 ps 4	В	J^{π} : γ to (18 ⁺).
7363.7? [†] 9	(20 ⁻)		В	J^{π} : γ to (18 ⁻), D γ to (19 ⁻).
7427.5? 14	(20^{+})		В	J^{π} : γ to (18 ⁺).
7511.8 <mark>#</mark> 24	(20^{-})		В	J^{π} : γ to (18 ⁻).
7798.5 [‡] 16	(21 ⁻)		В	J^{π} : Q γ to (19 ⁻).
7877.7? [†] 12	(21^{-})		В	J^{π} : γ to (19 ⁻).
7955.1 ^b 20	22^{+}	0.09 ps 4	В	J^{π} : E2 γ to 20 ⁺ .
8467 [#] 3	(22 ⁻)		В	J^{π} : Q γ to (20 ⁻).
8810.2 [‡] <i>19</i>	(23 ⁻)		В	J^{π} : γ to (21 ⁻).
9051.1 ^b 22	(24 ⁺)		В	J^{π} : Q γ to 22 ⁺ .
9483 # 3	(24 ⁻)		В	J^{π} : γ to (22 ⁻).

Continued on next page (footnotes at end of table)

¹²⁰Xe Levels (continued)

E(level) ^d	J ^π ^e	XREF	Comments
9875.2 [‡] 21	(25 ⁻)	В	J^{π} : γ to (23 ⁻).
10241.1 ^b 24	(26^{+})	В	J^{π} : γ to (24 ⁺).
10643.1? [#] 21	(26 ⁻)	В	J^{π} : γ to (24 ⁻).
11002.2 [‡] 24	(27 ⁻)	В	J^{π} : γ to (25 ⁻).
11524 ^b 3	(28^+)	В	J^{π} : γ to (26 ⁺).
12150.4? [‡] 20	(29 ⁻)	В	J^{π} : γ to (27 ⁻).

- [†] Band(A): π =– band built on the 2728-keV (6[–]) state.
- [‡] Band(B): π =- yrast band.
- [#] Band(C): π =- band built on the 2545-keV (6⁻) state.
- ^(a) Band(D): π =+ band built on the 3327-keV (10⁺) state.
- & Band(E): π =+ band built on the 4158-keV (12⁺) state.
- ^{*a*} Band(F): quasi- γ band.
- ^b Band(G): π =+ yrast band.
- ^{*c*} Band(H): quasi- β band.
- ^d From a least-squares fit to the adopted $E(\gamma's)$ by the evaluators.

^{*e*} For band members, from syst of rotational bands in even Xe isotopes and from B(E2)(W.u.) for deexciting γ 's in addition to the arguments given.

^f From DSA measurement in (HI,xnγ) (2000Pa63), unless otherwise noted.

^g Proposed as a member of a band built on the 2931-keV state, but intraband transitions of this band are not well established.

^{*h*} Possible doublet (1990MaYX).

						Adopted Lev	vels, Gam	mas (continued)
							$\gamma(^{120}\text{Xe}$	<u>))</u>
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^e	δ^{f}	Comments
322.61	2+	322.56 [@] 5	100	0.0	0^{+}	E2		B(E2)(W.u.)=101 5
796.16	4+	473.44 [@] 5	100	322.61	2^{+}	E2		B(E2)(W.u.)=117 8
876.10	2+	553.45 [@] 8	100 ^{<i>a</i>} 4	322.61	2+	M1,E2		Mult.: from $\alpha(K)$ exp in ε decay, but D from DCO in (HI,xn γ).
		876.09 [@] 5	39 ^a 3	0.0	0^{+}	E2		
908.70	0^{+}	586.1 [#] 1	#	322.61	2+	E2		
		908.7 [#]	#	0.0	0^+	E0		
1271.70	3+	395.54 [@] 5	31.1 ^{&} 20	876.10	2^{+}	D		Mult.: from DCO value in (HI,xn γ), but E2(+M1) in ¹²⁰ Cs ε decay.
		475.46 [‡] 7	17.8 20	796.16	4+			I_{γ} : weighted av from 1990MaYX and 1977Ge03.
		949.11 [@] 7	100 <mark>&</mark> 8	322.61	2^{+}	E2(+M1)		
1274.43	$(2)^{+}$	365.69 [#] 7	17.4 [#] 15	908.70	0^+	(E2)		
		398.23 [#] 7	9.3 [#] 9	876.10	2^{+}	M1,E2		
		478.30 [#] 7	20.3 [#] 15	796.16	4+	E2		
		951.93 <mark>#</mark> 7	30 [#] 3	322.61	2^{+}	(E2+E0)		
		1274.52 [#] 8	100 [#] 9	0.0	0^+	(E2)		
1397.33	6+	601.20 [@] 8	100	796.16	4+	E2		B(E2)(W.u.)=118 <i>I8</i> E_{γ} : doublet in (HI,xn γ).
1401.34	4+	525.24 [@] 10	78 ^{&} 3	876.10	2^{+}	E2		
		605.27 [@] 12	100 ^{&} 4	796.16	4+	M1,E2		
		1078.71 [‡] 9	5.8 ^b 5	322.61	2^{+}			
1623.25	0+	348.78 [#] 7	89 [#] 8	1274.43	(2)+	E2		B(E2)(W.u.)=14 5 Mult.: α (K)exp from 1977Ge03 suggests M2 but RUL excludes mult M2, E3 and higher.
		714.6 [#]	#	908.70	0^+	E0		
		747.24 [#] 7	100 [#] 10	876.10	2^{+}	(E2)		
		1300.75 [#] 9	56 [#] 5	322.61	2^{+}			
		1623.3 [#]	#	0.0	0^+	E0		
1711.75	$(4)^{+}$	314.2 [#] 3	1.4 [#] 5	1397.33	6+			
		437.13 [#] 7	37 [#] 3	1274.43	$(2)^{+}$	(E2)		
		439.6 [#] 2	5.2 [#] 14	1271.70	3+			
		915.2 [#] _1	9.1 [#] 10	796.16	4+	M1+E2+E0		
		1389.23 [#] 7	100 [#] 10	322.61	2^{+}			
1725.40	2+	451.14 [#] 7	100 [#] 10	1274.43	$(2)^{+}$	M1,E2		
		453.55 # 8	52 # 5	1271.70	3+	M1+E2	4.2 38	B(M1)(W.u.)=4.E-6 +8-4; B(E2)(W.u.)=0.26 22

S

From ENSDF

н

$\gamma(^{120}\text{Xe})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. ^e	Comments
1725.40	2+	816.75 [#] 8	16.5 [#] 15	908.70 0+	(E2)	
		849.37 [#] 7	35 [#] 3	876.10 2+	M1+E2+E0	
		1402.76 [#] 8	60 [#] 5	322.61 2+	M1+E2+E0	
1745.31	+	869.31 [#] 8	64 [#] 6	876.10 2+	M1,E2	
		1422.65 [#] 8	100 [#] 9	322.61 2+		
1767.54	$(2^+, 3, 4^+)$	971.3 [#] 1	12.4 [#] 8	796.16 4+		
		1444.97 [#] 7	100 [#] 8	322.61 2+		
1816.98	$(5)^+$	415.60 [#] 9	19.2 [#] 23	1401.34 4+	M1,E2	E_{γ}, I_{γ} : other: $E\gamma = 417$, $I\gamma < 12$ in (HI, xn γ).
		419.52 [#] 9	10.0 [#] 8	1397.33 6+		
		545.28 [@] 9	100 ^{&} 3	1271.70 3+	(E2)	
		1020.93 [@] 6	80 ^{&} 5	796.16 4+	(E2)	
1924.11	2+	649.84 [#] 9	100 [#] 10	1274.43 (2)+		
		1015.3 [#] 1	57 <mark>#</mark> 5	908.70 0+		
		1047.4 [#] 1	81 [#] 10	876.10 2+		
		1127.4 [#] 3	<28#	796.16 4+		
1941.31	2+	667.53 [#] 7	17 # 3	$1274.43 (2)^+$	M1,E2	
		669.50 [#] 8	54 [#] 4	1271.70 3+	M1,E2	
		1032.6 [#] 1	15.3 [#] 14	908.70 0+		
		1065.10 [#] 8	100 [#] 10	876.10 2+		
		1145.0 [#] 2	8.8 [#] 13	796.16 4+		
		1619.1 [#] 2	31 [#] 3	322.61 2+		
		1941.3# 8	8.3# 14	0.0 0+		
1982.49	$(1,2^{+})$	1105.6# 5	1.7" 6	876.10 2+		
		1659.9 [#] 1	31 [#] 5	322.61 2+		
1005 (2		1981.6^{m} I	100" 7	$0.0 0^{+}$		
1985.63	0^+	2/3.6/7	19.2" 6	1/11.75 (4)+	(E2)	I_{γ} : weighted av from 1990MaYX and 1977Ge03.
		584.5° I	100 4	1401.34 4	E2	
		588.53 = 12	$40^{\circ} 14$	1397.33 6'	MII,E2	
1005.07	2	1190.2" 4	1.4")	/90.10 4'		
1995.07	2	3/1.9" I 722 1 [#] 2	1.8"3	$1023.25 0^{+}$		
		$123.1^{\circ} 2$	∠.1" 3 ∠13 [#]	$12/1.70^{\circ}$		
		1000.4 1	<1J	306.70 0		

From ENSDF

Adopted Levels, Gammas (continued)											
	$\gamma(^{120}\text{Xe})$ (continued)										
E _i (level)	J^{π}_i	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^e		Comments				
1995.07	2	1119.0 [#] 1	9.5 [#] 11	876.10 2+							
		1199.6 [#] 3	2.5 [#] 5	796.16 4+							
		1672.3 [#] 1	100 [#] 11	322.61 2+							
		1995.0 [#] 2	19.0 [#] 16	$0.0 0^+$							
2050.56	$(2^+, 3, 4^+)$	109.10 [#] 9	3.6 [#] 4	1941.31 2+							
		776.5 [#] 2	4.1 [#] 6	1274.43 (2) ⁺							
		779.5 ^{g‡h} 1	<12 ⁸	1271.70 3+							
		1175.6 [#] 3	<17 [#]	876.10 2+							
		1254.1 [#] 1	15.0 [#] 19	796.16 4+							
		1728.2 [#] 1	100# 6	322.61 2+							
2071.99	4+	346.6 [#] 1	13.0 [#] 10	1725.40 2+							
		674.8 [#] 2	7.0 [#] 10	1397.33 6+							
		800.40 [#] 9	48 [#] 4	1271.70 3+	E2(+M1)						
		1195.80# 9	47# 4	876.10 2+							
		1276.3# 2	$100^{#} 20$	796.16 4+							
2072 7		1748.9 [#] 2	35# 3	$322.61 \ 2^+$ 706.16 4^+		E : a composite peak					
2072.7	8+	$701.86^{@} 5$	100	1307 33 6 ⁺	F2	B_{γ} . a composite peak. $B(F2)(W_{11}) = 97.17$					
2099.20	$(2^+ 3 4^+)$	$440.4^{\#}$ 3	$14^{\#} 6$	$1725 \ 40 \ 2^+$	62	D(E2)(W.u.) = 97.17					
2105.10	(2,3,1)	891.1 [#] .2	$10.4^{\#}.16$	1723.10 2 $1274.43 (2)^+$							
		893.4 [#] 1	$15.7^{\#} 20$	$1271.70 3^+$							
		$1289.0^{\#} 2$	$21.6^{\#} 20$	876.10 2+							
		1369.07 [#] 8	100 [#] 8	796.16 4+							
		1842.2 [#] 1	80 [#] 6	322.61 2+							
2186.80	(2,3,4)	245.7 <mark>#</mark> 6	1.8 [#] 11	1941.31 2+							
		785.6 [#] 1	26.7 [#] 22	1401.34 4+							
		912.2 [#] 1	31.1 ^{#} 22	1274.43 (2)+							
		1310.82 [#] 9	71 [#] 7	876.10 2+							
		1864.1 [#] 1	100 [#] 7	322.61 2+							
2236.65	0^{+}	312.7 <mark>#</mark> 2	100#	1924.11 2+							
		613.2 [#]	# #	1623.25 0+	E0						
		2236 [#]	#	0.0 0+	E0						
2242.13		968.0" 2	21.3 [#] 13	$1274.43(2)^+$							

From ENSDF

	Adopted Levels, Gammas (continued)										
	$\gamma(^{120}$ Xe) (continued)										
	$F_{e}(level) = I^{\pi} = F_{e} = I^{\pi} = Mult^{e}$										
E_i (level)	J_i^{Λ}	Eγ	I_{γ}	E_f	J_f^{κ}	Mult.	Comments				
2242.13		1366.0 [#] 1	93 [#] 9	876.10	2^{+}						
		1919.4 [#] 1	100 [#] 7	322.61	2+						
2272.68	$(4^{-}, 5^{-})$	455.9 [#] 3	5.3# 11	1816.98	$(5)^{+}$						
		560.87 [#] 7	100 [#] 10	1711.75	$(4)^+$	(E1)					
		871.4 [#] 2	11.6 [#] 21	1401.34	4+						
		1001.0 [#] 2	9.5# 11	1271.70	3+						
		1476.6 [#] 1	38 [#] 3	796.16	4+						
2295.10		583.1 [#] 1	100 [#] 18	1711.75	(4)+						
		1023.6 [#] 2	41# 6	1271.70	3+						
2402.12	$(1,2)^+$	460.4 2	9.7# 16	1941.31	2+						
		634.5 [#] 2	8.2# 15	1767.54	$(2^+,3,4^+)$						
		$656.4^{\#} 3$	10 [#] 3	1745.31	+						
		779.5^{gmn} 1	<31 ⁸	1623.25	0+						
		$1127.4^{\#}$ 3	< 9.4"	1274.43	(2) ⁺						
		1130.46" 7	100" 10	1271.70	3+	M1,E2					
		1494.4" <i>3</i>	18" 5	908.70	0+ 2+						
		1526.1" <i>1</i>	39" 3 ((# 5	876.10	2+						
		$20/9.3^{"}$ I	66" 3 27# 5	322.61	2 ⁺						
2411.0	0+	2402.0° 3	27" S #	0.0	0 ⁺	EO					
2411.0	$(2, 4)^+$	2411 621 47 [#] 9	100# 0	0.0	0 (5)+						
2440.42	(3,4)	$1572.0^{\#}2$	$100 \ 9$ $12 \ 1 \ 24$	876.10	(J) 2+	W11,E2					
		1572.0 2 1653 0 [#] 5	12.1 24 $30^{\#} 0$	706.16	2 1+						
2460 88	7+	$475.5^{\#}$ 1	$38^{\#}$ 10	1985.63	- 6 ⁺						
2+00.00	,	$643.76^{@}7$	$100^{\&} 9$	1905.05	$(5)^+$	E2	$B(E2)(Wu) = 1.4 \times 10^2 8$				
		$1063.71^{@}$ 19	33^{d} 3	1397 33	(5) 6 ⁺	112	$D(D_2)(W,u_2) = 1.1 \times 10^{-10}$				
2495.2	(7-)	1098.7	100	1397.33	6 ⁺	(E1)					
2536.07		293.5 [#] 3	2.8 [#] 10	2242.13							
		1261.5 [#] 2	16 [#] 5	1274.43	$(2)^{+}$						
		1659.9 [#] 1	100 [#] 7	876.10	2+						
		2214.0 [#] 2	33 [#] 3	322.61	2+						
2544.8	(6 ⁻)	1147.8	100	1397.33	6+	D					
2637.59	$(1,2^+)$	2315.0# 1	100# 7	322.61	2+						

From ENSDF

L

Adopted Levels, Gammas (continued)											
	γ ⁽¹²⁰ Xe) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^e	Comments				
2637.59	$(1,2^+)$	2636.9 [#] 4	27.1 [#] 17	0.0	0+						
2653.83	(8+)	668.2 [@] 1	100	1985.63	6+						
2669.5		1268.6	100	1401.34	4+	D					
2682.12		956.9 [#] 1	56 [#] 5	1725.40	2+						
		1407.5 [#] 1	59 [#] 7	1274.43	$(2)^{+}$						
		1806.0 [#] 2	100 [#] 7	876.10	2+						
2721.89	$(3,4,5)^+$	736.02 [#] 9	100 [#] 10	1985.63	6+	M1,E2					
		905.2 [#] 1	30.0 [#] 25	1816.98	$(5)^{+}$						
		1450.1 [#] 3	28 [#] 5	1271.70	3+						
2727.34	$(4^+, 5, 6^+)$	655.1 [#] 3	8 [#] 3	2071.99	4+						
		741.9 [#] 2	7 [#] 1	1985.63	6+						
		1329.87 [#] 8	52 [#] 4	1397.33	6+						
		1931.1 [#] 1	100 [#] 7	796.16	4+						
2728.5	(6 ⁻)	59.5	25 8	2669.5							
		183.8	25 8	2544.8	(6 ⁻)						
		656.2	100 25	2072.7	6 +						
		742.0 911 9	33 8 42 17	1985.05	$(5)^+$	D					
2812 68	(4)	826.7 [#] 3	$21^{\#}$ 3	1985.63	(3) 6 ⁺	D					
2012.00	(1)	$1067.9^{\#}.2$	$31^{\#}$ 3	1745 31	+						
		1007.9 2 1411 1 [#] 7	67 [#] 8	1401 34	\mathcal{A}^+						
		$1538 4^{\#} I$	$100^{\#}$ 10	1274.43	$(2)^+$						
		$1936.4^{\#}.4$	$36^{\#} 5$	876.10	(2) 2 ⁺						
2830.20	7-	732.4	31	2099.20	2 8 ⁺						
		1433.0 [#] 1	100 [#] 5	1397.33	6+	D	E_{γ} : other: 1434.0 <i>I</i> in ¹²⁰ Cs ε decay.				
2830.95		731.6 [#] 2	66 [#] 15	2099.20	8+		,				
		759.1 [#] 2	$100^{\#} 17$	2071.99	4+						
		$846.4^{\#h}$ 2	87 [#] 17	1985.63	6+						
2853.98		451.8 [#] /	<183 [#]	2402.12	$(1.2)^+$						
		688.72 [#] 9	13.3 [#] 17	2165.16	$(2^+, 3, 4^+)$						
		1037.0 [#] 3	3.3 [#] 7	1816.98	(5)+						
		1086.4 [#] /	<20 [#]	1767.54	$(2^+, 3, 4^+)$						
		1142.33 [#] 8	38 [#] 3	1711.75	$(4)^+$						
		1452.69 [#] 8	100 [#] 8	1401.34	4+						

From ENSDF

н

$\gamma(^{120}$ Xe) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}]	Mult. ^e	Comments
2853.98		1581.2 ^{#h} 2	6.1 [#] 8	1271.70 3+			
		2056.7 ^{#h} 1	92 [#] 8	796.16 4+			
2872.70	10^{+}	773.5 1	100	2099.20 8+]	E2	B(E2)(W.u.)=92 15
2912.1		1516	100	1397.33 6+			
2930.0	(7-)	99.5	13 3	2830.20 7-	(Q	
		1533.7	100 9	1397.33 6]	D	
2966.77		136.8 [#] 1	32# 5	2830.20 7-			
	(0-)	239.2 [#] 1	100" 10	2727.34 (4+	⁺ ,5,6 ⁺) 1	M1,E2	
2966.84	(8 ⁻)	(38) (56)		2930.0 (7 ⁻ 2912.1)		
		136.6 [@] 1	51 <i>3</i>	2830.20 7-]	D	
		239.4	100 14	2728.5 (6-	-)		
		472.7	<29	2495.2 (7-	-)	D.	
2070.80	(0^{-})	507.5	23.6	2460.88 7	-\	D	
2970.80	(9)	470 871.6.1	31 4 100 3	2495.2 (7)	(E1)	Mult : $AI = 1$ with $\delta = 0$ from $\alpha(\theta)$
3003.4	(8^{-})	458.9	60 10	2544.8 (6 ⁻	-) ((E1)	with $\Delta J = 1$ with $b = 0$ from $\gamma(b)$.
	(0)	507.7	50 10	2495.2 (7-	-)	()	
		904.5	100 10	2099.20 8+			
3075.7	(8 ⁻)	109.0	100 6	2966.84 (8-	-)		
2140.22	$\langle \mathbf{O} = \rangle$	245.2	22.6	2830.20 7-	- \		
3149.32	(9)	/3.5	19 5	30/5./ (8)	(E2)	L from weighted av from 1004Te05 and 1086Le11
		219	2915	2900.84(8) 2930.0(7)) (-)	(E2)	I_{γ} . Itolii weighted av Itolii 19941005 and 1980L011.
		319.1 <i>I</i>	100 3	2830.20 7)		I_{ν} : from weighted av from 1994To05 and 1986Lo11.
3149.5		182.7	100	2966.77			
3174.11	9+	713.6	100 18	2460.88 7+]	E2	$B(E2)(W.u.)=1.5\times10^2 5$
	(2)	1074.9 <i>1</i>	<23	2099.20 8+			
3280.7	(9^{-})	131.2	100	$3149.32 (9^{-1})$	-) +)		
3320.43	(10)	0/2.01	100	2033.83 (8) + 2 4+)		
3357.21	(2^{+})	1590.6 [#] 3	6.4" 11	1/6/.54 (2*	,3,4 ')		
		1632.0" 3	31" 3	1725.40 21			
		2448.4" 4	19" 3	908.70 0+			
		2560.2 ^{<i>m</i>} 3	40 " 4	796.16 4+			
		3034.5 [#] 1	100 [#] 7	322.61 2+			
		3357.2 [#] 1	41 [#] 3	0.0 0+			
3383.34	(10 ⁻)	102.5	6.7 22	3280.7 (9-	-)		E. Jackler
		234.1	100 3	3149.32 (9)		E_{γ} : doublet.

 $^{120}_{54}{
m Xe}_{66}$ -10

10

$\gamma(^{120}Xe)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^e	Comments
3383.34	(10 ⁻)	416.5 1	79 <i>3</i>	2966.84 (8-)		
3470.91	(2^{+})	1175.6 [#] 1	<66 [#]	2295.10		
		1399.5 [#] 3	32 # 5	2071.99 4+		
		1848.2 [#] 2	44 ^{#} 5	1623.25 0+		
		2594.9 [#] 5	46 [#] 7	876.10 2+		
		3148.3 [#] 2	100 [#] 7	322.61 2+		
		3470.6 [#] 4	10.0 [#] 12	$0.0 0^+$		
3535.4	(10 ⁻)	532.2	100 4	3003.4 (8 ⁻)		
		564.4	40 8	2970.80 (9-)		
3575.3	(10^{-})	191.8	100	3383.34 (10 ⁻)	Q	
3591.69	(11)	620.9 <i>I</i> 710 5	$100 \ 4$	2970.80 (9) 2872.70 10 ⁺	Q	
3648.44	(11^{-})	265.1 1	23 4 91 4	$3383.34 (10^{-})$	D (D)	
5010.11	(11)	499.1 <i>I</i>	100 4	$3149.32 (9^{-})$	(E2)	
3676.51	12^{+}	803.8 1	100	2872.70 10+	E2	B(E2)(W.u.)=83 13
3802.62	(2^+)	1560.5 [#] 2	22 [#] 3	2242.13		
		1566.1 [#] 2	19 [#] 3	2236.65 0+		
		2926.5 [#] 1	76 [#] 5	876.10 2+		
		3006.2 [#] 1	100 [#] 7	796.16 4+		
		3480.8 [#] 3	8.1 [#] 10	322.61 2+		
		3802.9 [#] 2	15.6 [#] 14	$0.0 0^+$		
3852.4	(11 ⁻)	204.0	100	3648.44 (11-)	Q	
3918.7	12^{+}	242.0	37 7	3676.51 12+	D	
		592.6	93 11	$3326.43 (10^+)$	E2	B(E2)(W.u.)=7.E+1.7
3033.0	(11^{+})	1040.1 759.8	100 11	$28/2.70 \ 10^{\circ}$ $3174 \ 11 \ 9^{\circ}$	F2	
3956.55	(12^{-})	308.1	100 3	3648.44 (11 ⁻)	D	I_{y} : from weighted av from 1994To05 and 1986Lo11.
	· · /	573.2 1	92 11	3383.34 (10 ⁻)	(E2)	I_{γ} : from weighted av from 1994To05 and 1986Lo11.
4157.8	(12^{+})	481.1		3676.51 12+	D	
		1285.2		$2872.70 \ 10^+$		
4167.5	(12 ⁻)	576 ⁿ	53	3591.69 (11 ⁻)		
4212.5	(12^{-})	632.1	100 3	$3535.4 (10^{-})$	(E2)	
4212.3	(12)	230.2 637	100 20	3575.3 (12)		
4292.66	(13 ⁻)	336.1 1	93 10	3956.55 (12 ⁻)	D	
	```	644.3	100 10	3648.44 (11-)	Q	
		702	<25	3591.69 (11 ⁻ )		
4306.3	(13 ⁻ )	657.5	5.99	3648.44 (11 ⁻ )		

11

# $\gamma(^{120}$ Xe) (continued)

E _i (level)	$\mathbf{J}_i^\pi$	$E_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^e	Comments
4306.3	(13 ⁻ )	714.9	100 4	3591.69 (11 ⁻ )	(E2)	
4313.12	$(2^{+})$	2127.4 [#] 4	28 [#] 4	2186.80 (2,3,4)		
		2911.4 [#] 2	100 [#] 7	1401.34 4+		
		3404.5 [#] 4	48 [#] 4	908.70 0+		
		3990.9 [#] 3	15 9 [#] 17	322.61 2+		
		$4313.0^{\#}$ 1	37# 3	$0.0 0^{+}$		
4458.92	14+	782.4 1	100	$3676.51  12^+$	E2	B(E2)(W.u.)=80.12
4557.7	(13 ⁻ )	265	100 29	4292.66 (13 ⁻ )		
		705 ^h	<57	3852.4 (11 ⁻ )		
4608.4	$(14^{+})$	149.2	18 5	4458.92 14+	D	
		690.0	100 8	3918.7 12+		
1661.15	(1.4-)	932	<25	3676.51 12+	P	
4664.45	(14)	371.8 1	53 4	4292.66 (13)	D (E2)	$I_{\gamma}$ : from weighted av from 19941005 and 1986L011.
4695 9	$(13^{+})$	762	100 4	3930.33 (12) $3933.9 (11^+)$	(E2)	$1_{\gamma}$ . Hom weighted av from 19941005 and 1980L011.
4846.8	$(13^{+})$	387	100	4458.92 14+		
	()	690 ^h		4157.8 (12+)		
		1170.8		3676.51 12+		
4888.5	(14 ⁻ )	721.0		4167.5 (12 ⁻ )	(E2)	
4938.5	(14 ⁻ )	274	100	4664.45 (14 ⁻ )		
		726 ^h		4212.5 (12 ⁻ )		
5059.1	$(15^{-})$	394.7	74 6	4664.45 (14 ⁻ )	D	
5095 2	$(15^{-})$	766.5	100 6	4292.66 (13)	(E2) (E2)	
5085.2	(15)	7927	3712	4300.3 (13) $4292.66 (13^{-})$	(E2)	
5232.3	16+	773.6	100	4458 92 14+	E2	$B(E2)(W_{\rm H}) = 1.2 \times 10^2 4$
5405.9	$(16^{+})$	797.5	100	4608.4 (14 ⁺ )	E2	$B(E2)(W.u.) = 1.1 \times 10^2 5$
5479.7	(16 ⁻ )	420.8	65 8	5059.1 (15 ⁻ )	D	
		815.1	100 8	4664.45 (14 ⁻ )	(E2)	
5636.9	$(16^{+})$	789.8	100 25	4846.8 (14 ⁺ )	(E2)	B(E2)(W.u.)=5.E+1.3
5(01.9	(1(-))	1178.0	100 17	4458.92 14+	(E2)	B(E2)(W.u.) = 7.4
5010.0	(10) $(17^{-})$	803.5	38.7	4888.3 (14) $5479.7 (16^{-})$	(E2) D	
3717.7	(17)	860.9	100 10	5059.1 (15 ⁻ )	(E2)	
5928.9	(17 ⁻ )	843.7 1	100	5085.2 (15 ⁻ )	(E2)	
6051.0	18+	818.7	100	5232.3 16+	E2	$B(E2)(W.u.)=1.7\times10^2 3$
6339.0	(18 ⁺ )	933	100	5405.9 (16 ⁺ )	(E2)	B(E2)(W.u.)=103 24
6382.5	(18-)	462.5	88 25	5919.9 (17 ⁻ )	D	
		902.8	100/25	54/9.7 (16 ⁻ )	(E2)	

 $^{120}_{54} \mathrm{Xe}_{66}$ -12

### $\gamma(^{120}\text{Xe})$ (continued)

E _i (level)	$\mathbf{J}_i^{\pi}$	$E_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger}$	$\mathbf{E}_f  \mathbf{J}_f^{\pi}$	Mult. ^e	Comments
6457.1	$(18^{+})$	820	100 18	5636.9 (16+)		
		1225	64 27	5232.3 16+		
6574.5	$(18^{-})$	882.7	100	5691.8 (16 ⁻ )	(E2)	
6833.5	(19 ⁻ )	904.6	100	5928.9 (17 ⁻ )	(E2)	
6862.6	(19 ⁻ )	480.1	50 14	6382.5 (18 ⁻ )		
		942.6	100 21	5919.9 (17 ⁻ )		
6955.4	$20^{+}$	904.4	100	6051.0 18+	E2	$B(E2)(W.u.)=2.2\times10^2 6$
7320.0	$(20^{+})$	864 <mark>/</mark>	<167	6457.1 (18 ⁺ )		
		981	100 33	6339.0 (18 ⁺ )		
7363.7?	(20 ⁻ )	500 ^h	<71	6862.6 (19 ⁻ )	D	
		980 <mark>h</mark>	100 36	6382.5 (18-)		
7427.5?	$(20^{+})$	1088 <mark>h</mark>		6339.0 (18+)		
7511.8	$(20^{-})$	937.3	100	6574.5 (18 ⁻ )		
7798.5	$(21^{-})$	965.0	100	6833.5 (19 ⁻ )	(E2)	
7877.7?	(21 ⁻ )	1014 ^h	100	6862.6 (19 ⁻ )		
7955.1	$22^{+}$	999.7	100	6955.4 20+	E2	$B(E2)(W.u.)=1.8\times10^2 8$
8467	$(22^{-})$	955	100	7511.8 (20 ⁻ )	(E2)	
8810.2	(23 ⁻ )	1011.7	100	7798.5 (21 ⁻ )		
9051.1	$(24^{+})$	1096	100	7955.1 22+	(E2)	
9483	(24 ⁻ )	1016	100	8467 (22 ⁻ )		
9875.2	(25 ⁻ )	1065	100	8810.2 (23 ⁻ )		
10241.1	$(26^{+})$	1190	100	9051.1 (24+)		
10643.1?	(26 ⁻ )	1160 <mark>/</mark>	100	9483 (24-)		
11002.2	(27 ⁻ )	1127	100	9875.2 (25 ⁻ )		
11524	$(28^{+})$	1283	100	10241.1 (26 ⁺ )		
12150.4?	(29 ⁻ )	1147 ^h	100	11002.2 (27 ⁻ )		

[†] From (HI,xn $\gamma$ ), unless otherwise noted.

[‡] From ¹²⁰Cs  $\varepsilon$  decay.

[#] From ¹²⁰Cs  $\varepsilon$  decay, but not observed in (HI,xn $\gamma$ ).

^(a) Weighted av from ¹²⁰Cs  $\varepsilon$  decay and (HI,xn $\gamma$ ).

& From weighted av from ¹²⁰Cs  $\varepsilon$  decay (1990MaYX,1977Ge03) and (HI,xn $\gamma$ ) (1994To05,1986Lo11).

^{*a*} From weighted av from ¹²⁰Cs  $\varepsilon$  decay (1990MaYX) and (HI,xn $\gamma$ ) (1994To05,1986Lo11).

^b From weighted av from ¹²⁰Cs  $\varepsilon$  decay (1990MaYX) and (HI,xn $\gamma$ ) (1994To05).

^c From weighted av from ¹²⁰Cs  $\varepsilon$  decay (1990MaYX,1977Ge03) and (HI,xn $\gamma$ ) (1994To05,1986Lo11).

^d From weighted av from ¹²⁰Cs  $\varepsilon$  decay (1990MaYX,1977Ge03) and (HI,xn $\gamma$ ) (1994To05).

^e From  $\alpha(K)$ exp in ¹²⁰Cs  $\varepsilon$  decay, from DCO ratio and  $\gamma(\theta)$  in (HI,xn $\gamma$ ), and from placement in level scheme.

13

 $\gamma(^{120}\text{Xe})$  (continued)

 f  From  $^{120}\mathrm{Cs}\ \varepsilon$  decay.

^g Multiply placed with intensity suitably divided.
 ^h Placement of transition in the level scheme is uncertain.



¹²⁰₅₄Xe₆₆

Legend

## Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$  Decay (Uncertain)



Level Scheme (continued)

Intensities: Relative photon branching from each level



¹²⁰₅₄Xe₆₆

Legend

## Level Scheme (continued)

Intensities: Relative photon branching from each level



Legend

----

γ Decay (Uncertain)

### Level Scheme (continued)

Intensities: Relative photon branching from each level



¹²⁰₅₄Xe₆₆



¹²⁰₅₄Xe₆₆

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $---- \rightarrow \gamma$  Decay (Uncertain)



¹²⁰₅₄Xe₆₆



22

¹²⁰₅₄Xe₆₆-22

From ENSDF

 $^{120}_{54} \mathrm{Xe}_{66}$ -22



¹²⁰₅₄Xe₆₆

**Band**(G):  $\pi$ =+ yrast band



¹²⁰₅₄Xe₆₆