History Type Author Citation Literature Cutoff Date Full Evaluation K. Kitao, Y. Tendow and A. Hashizume NDS 96, 241 (2002) 1-Dec-2001

1982Va10: E=22-33 MeV, measured γ , $\gamma\gamma(t)$, $\gamma(\theta)$, Ice(K), γ -ray linear polarization, excit.

1970Wa13: E=26-31 MeV, measured γ , $\gamma(t)$, $\gamma(\theta)$. 1970Wa13 also reported I γ from (α ,4n γ) at E=52-61 MeV.

1973Wy01: measured I(ce(K)), deduced K-conversion coefficients.

Other: 1969Be04, 2000Ha65.

E(level)(0.0,560.4,1161.5,1776.2,2652.9,3543.5,4459.7 levels): g.s. ΔJ=2 band.

¹²⁰Te Levels

E(level) [†]	J ^π ‡	E(level) [†]	J ^{π‡}	E(level) [†]	J ^π ‡	E(level) [†]	$J^{\pi \ddagger}$
0.0	0^{+}	2201.48 5	6+	3130.83 9	9+	4086.38 9	11-
560.437 20	2+	2461.36 11	5-	3142.17 7	8-	4092.91 9	12+
1103.21 20	(0^{+})	2519.89 6	6+	3364.30 7	10^{+}	4459.78 <i>13</i>	12^{+}
1161.55 <i>3</i>	4+	2652.96 6	8+	3374.19 8	9-	4503.25 11	(12^{-})
1201.28 5	2+	2835.32 9	8+	3399.73 8	9-	4815.3	(13 ⁻)
1535.08 9	(2^{+})	2877.62 13	6-	3487.40 10	10^{+}	4818.71 <i>13</i>	(14^{+})
1776.22 5	6+	2899.197	7-	3543.58 9	10^{+}	5345.11 16	$(14, 16)^+$
1815.10 6	4+	2940.28 7	7+	3567.26 12			
1863.34 10	$(3)^{+}$	3030.54 7	7-	3813.60 9	10^{-}		
1924.39 6	2+	3039.26 7	8+	3881.48 12	11^{+}		

[†] From a least-squares fit to $E(\gamma's)$ by the evaluators. [‡] Based on $\gamma(\theta)$, γ -ray linear pol from ¹¹⁸Sn(α ,2n γ), γ mult and excit.

 $^{120}_{52}$ Te₆₈-1

 $\gamma(^{120}\text{Te})$

All γ rays decay with T_{1/2}<3 ns.

 α (K)exp from 1982Va10, values are renormalized to α (K)(E2)=0.00509 for 560 γ (evaluators).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	δ^{\dagger}	$\alpha^{\boldsymbol{e}}$	Comments
111.63 <i>3</i>	1.75 7	3142.17	8-	3030.54	7-	D+Q ^C	0.20 +9-7		
201.89 3	0.77 4	3142.17	8-	2940.28	7+	D+Q ^C	-0.09 + 9 - 4		
242.97 3	1.35 5	3142.17	8-	2899.19	7-	M1+E2 ^b	1.0 2	0.069 2	
295.51 <i>3</i>	2.39 9	3130.83	9+	2835.32	8+	M1+E2 ^b	+0.25 +6-2	0.0362 1	
325.04 <i>3</i>	6.4 2	3364.30	10^{+}	3039.26	8+	E2 ^b		0.0299	
356.56 4	1.50 4	3487.40	10^{+}	3130.83	9+	M1+E2 ^b	+0.29 +14-8	0.0221	
394.08 7	0.57 4	3881.48	11^{+}	3487.40	10^{+}	M1+E2 ^b	+0.40 +38-20	0.0170 2	
416.26 7	1.33 7	2877.62	6-	2461.36	5-	M1+E2 ^b	-0.25 +8-9	0.0148	
425.23 <i>3</i>	7.0 2	2201.48	6+	1776.22	6+	M1+E2 ^b	+0.14 +5-7	0.0141	
526.40 9	0.7 2	5345.11	$(14, 16)^+$	4818.71	(14 ⁺)				
542.8	0 55 10	1103.21	(0^+)	560.437	2 ⁺	DC			I_{γ} : intensity was not given by authors.
542.82 8	0.55 10	4080.38	11 2+	3543.58 0.0	10^{+}	D* [F2]		0.00601	$\alpha = 0.00601$: $\alpha(K) = 0.00509$: $\alpha(L) = 0.00070$
500.112	100	500.157	-	0.0	0	[22]		0.00001	α (K)exp: 0.0055 4 given by authors.
601.11 2	94 2	1161.55	4+	560.437	2+	E2		0.00499	$\alpha(K) \exp = 0.0038 \ 3$
л.н.									α =0.00499; α (K)=0.00423; α (L)=0.00057
613.8 ⁴ <i>#</i> 4	1.0 3	1815.10	4+	1201.28	2^{+}	(E2)		0.00472	$\alpha(K) \exp = 0.0035 3$
(1) (2) ## ((7.2	155(00	< ±	1161 55	4			0.00450	$\alpha = 0.00472; \ \alpha(K) = 0.00400; \ \alpha(L) = 0.00054$
614.62+" 4	67.2	1776.22	0 ⁺	1161.55	4+	(E2)		0.00470	$\alpha(K) \exp = 0.0035 3$ $\alpha = 0.00470; \alpha(K) = 0.00300; \alpha(L) = 0.00054$
640.85.5	372	1201.28	2+	560 437	2+	$M1 + E2^{b}$	0.02.0		u = 0.00470, u(R) = 0.00399, u(L) = 0.00034
653 54 5	5.7 Z	1201.20	2 4+	1161 55	2 4+	M1 + E2	-0.929	0.00478.18	$\alpha(K) = 0.0041.8$
055.54 5	1.15 /	1015.10	4	1101.55	4	WITTL2	-0.30 +28-37	0.00478 18	α (K)exp=0.0041 8 α =0.00478 18; α (K)=0.00410 21; α (L)=0.00051 1
662.0.1	0.97 10	1863.34	$(3)^{+}$	1201.28	2^{+}	D+0 ^b			
671.43 5	2.85 9	3813.60	10-	3142.17	8-	E2		0.00375	$\alpha(K) \exp = 0.0031 5$
									$\alpha = 0.00375; \alpha(K) = 0.00319; \alpha(L) = 0.00042$
686.65 5	0.77 7	4086.38	11-	3399.73	9-	Q^{c}			
689.65 7	0.78 7	4503.25	(12^{-})	3813.60	10-	Q ^c			
704.77 7	1.22 8	2519.89	6+	1815.10	4+	E2 ^D			
711.3 ^{‡@} 1	1.3 2	3364.30	10+	2652.96	8+	E2		0.00324	α (K)exp=0.0020 5 α =0.00324; α (K)=0.00276; α (L)=0.00036
712.0 ^{‡@} 2	1.2 2	4086.38	11-	3374.19	9-	E2			$\alpha(K) \exp = 0.0020 5$
721.21 6	4.2 1	3374.19	9-	2652.96	8+	E1		0.00119	α (K)exp=0.0007 2 α =0.00119; α (K)=0.00102; α (L)=0.00012
725.8 1	1.38 9	4818.71	(14 ⁺)	4092.91	12^{+}	(E2) ^C			

2

 $^{120}_{52}{
m Te}_{68}$ -2

						¹¹⁸ Sn(α ,2n γ)	1982Va10,1973V	Wy01 (continu	ed)	
γ ⁽¹²⁰ Te) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	δ^{\dagger}	α^{e}	Comments	
728.61 5	5.3 2	4092.91	12+	3364.30	10+	E2		0.00305	α (K)exp=0.0016 5 α =0.00305; α (K)=0.00260; α (L)=0.00034	
729.0 ^f		4815.3	(13 ⁻)	4086.38	11-				E_{γ} : from authors' drawing; no intensity was given by authors	
743.65 6	2.1 <i>I</i>	2519.89	6+	1776.22	6+	M1+E2	0.90 20	0.00334 10	$\alpha(K) \exp = 0.0029 \ 6$ $\alpha = 0.00334 \ lt \ \alpha(K) = 0.00286 \ 9 \ \alpha(L) = 0.00036 \ l$	
746.77 6	2.9 1	3399.73	9-	2652.96	8+	E1		0.00110	$\alpha(K) \exp[-0.0008 2]$ $\alpha(K) \exp[-0.0008 2]$ $\alpha=0.00110; \alpha(K)=0.00095; \alpha(L)=0.00011$	
762.80 5	1.17 7	1924.39	2+	1161.55	4+	E2		0.00342 9	$\alpha(K)\exp=0.0025\ 6$ $\alpha=0.00342\ 9;\ \alpha(K)=0.00294\ 8;\ \alpha(L)=0.00036\ I$	
837.79 5	11.6 7	3039.26	8+	2201.48	6+	E2		0.00218	Mult.: authors given $\delta = -0.3$ 2. $\alpha(K) \exp = 0.0014$ 1 $\alpha = 0.00218; \ \alpha(K) = 0.00186; \ \alpha(L) = 0.00024$	
876.73 4	25.9 12	2652.96	8+	1776.22	6+	E2		0.00196	$\alpha = 0.00216$, $\alpha(K) = 0.0186$, $\alpha(L) = 0.00024$ $\alpha(K) \exp = 0.0016$ I $\alpha = 0.00196$; $\alpha(L) = 0.00021$	
890.63 7	4.6 3	3543.58	10^{+}	2652.96	8+	E2		0.00189	$\alpha(K) \exp[=0.00150, \alpha(K)=0.00160; \alpha(L)=0.00021$ $\alpha(K) \exp[=0.00182; \alpha(K)=0.00162; \alpha(L)=0.00021$	
914.3 <i>1</i> 916.2 <i>1</i>	1.21 9	3567.26	12+	2652.96	8^+ 10 ⁺	c			a 0.00107, a(k) 0.00102, a(k) 0.00021	
974.64 <i>8</i>	0.81 7	1535.08	(2^+)	560.437	2^+	Q E0+M1+E2 ^d			α (K)exp=0.0043 6	
1040.02 6	12.6 6	2201.48	6+	1161.55	4+	E2		0.00133	$\alpha(K) \exp[-0.0013 I]$	
1059.10 7	3.4 1	2835.32	8+	1776.22	6+	E2		0.00128	$\alpha = 0.00133; \alpha(K) = 0.00114; \alpha(L) = 0.00014$ $\alpha(K) \exp(=0.0014) 3$	
1103.2 2		1103.21	(0+)	0.0	0^+	(E0)			α =0.00128; α (K)=0.00110; α (L)=0.00014 α (K)exp>0.0043 E _{γ} : no I γ observed, assignment on the basis of conversion	
1122.93 8	5.0 3	2899.19	7^{-}	1776.22	6+	E1		0.00050	$\alpha(K) \exp = 0.00055 \ 9$	
1164.05 9	3.7 4	2940.28	7+	1776.22	6+	M1+E2	-0.45 +3-14	0.00128 1	$\alpha(K) = 0.00128$ ($\alpha(K) = 0.00043$) $\alpha(K) = 0.00128$ ($\alpha(K) = 0.00110$ 2; $\alpha(L) = 0.00013$	
1201.2 1	1.0 1	1201.28	2^{+}_{-}	0.0	0^+	Q ^C		0.000.11	$(\mathbf{L}) = 0.00025$	
1254.36 9	3.73	3030.54	//=	1776.22	6+	El		0.00041	α (K)exp<0.00037 α =0.00041; α (K)=0.00035	
1299.8 <i>1</i>	2.5 2	2461.36	5-	1161.55	4+	E1		0.00038	α (K)exp<0.00046 α =0.00038; α (K)=0.00033	
1303.1 2	0.62	1863.34	$(3)^+$	560.437	$2^+_{4^+}$	(M1+E2)	0.17 +15-16			
1358.0 2 1364.1 <i>1</i>	2.0 2	1924.39	0 2 ⁺	560.437	4 2 ⁺	Q M1(+E2)	-0.14 +14-5	0.00093 1	α (K)exp<0.0012 α =0.00093 <i>I</i> ; α (K)=0.00080	

ω

From ENSDF

 $^{120}_{52}{
m Te}_{68}$ -3

L

 $\gamma(^{120}\text{Te})$ (continued)

[†] From 1982Va10.

[±] Unresolved doublet. Intensities derived from coincidence data (1982Va10). [#] α (K)exp given for 613.8 γ +614.6 γ .

- ^(a) α (K)exp given for 711.3 γ +712.0 γ . ^(b) Relative to I(560.44 γ)=¹⁰⁰.AtE(α)=28 MeV.
- ^{*a*} From $\alpha(K)exp$, $\gamma(\theta)$ and γ -ray linear pol (1982Va10), unless otherwise noted.

^b From $\gamma(\theta)$ and γ -ray linear pol.

^{*c*} From $\gamma(\theta)$.

^d From $\gamma(\theta)$ and $\alpha(K)$ exp.

^e Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^f Placement of transition in the level scheme is uncertain.

 $^{120}_{52}$ Te $_{68}$

¹¹⁸Sn(α ,2n γ) 1982Va10,1973Wy01

