Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh	ENSDF	30-Jun-2017	

 $O(\beta^{-})=14490 SY; S(n)=3220 SY; S(p)=15130 CA; O(\alpha)=-12060 CA$ 2017Wa10.1997Mo25

Estimated uncertainties (2017Wa10): 640 for $Q(\beta^{-})$, 710 for S(n).

 $Q(\beta^{-})$ and S(n) from 2017Wa10; S(p) and $Q(\alpha)$ from 1997Mo25.

Q(β⁻n)=8980 590, S(2n)=7870 640 (syst,2017Wa10). S(2p)=33480 (1997Mo25,theory).

2010Oh02: ¹²⁰Tc nuclide identified in Be(²³⁸U,F) and Pb(²³⁸U,F) reactions with a ²³⁸U⁸⁶⁺ beam energy of 345 MeV/nucleon produced by the cascade operation of the RBIF accelerator complex of the linear accelerator RILAC and four cyclotrons RRC, fRC, IRC and SRC. Identification of ¹²⁰Tc nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments using BigRIPS fragment separator. Experiments performed at RIKEN facility. Based on A/Q spectrum and Z versus A/Q plot, 3 counts were assigned to ¹²⁰Tc isotope. (Q=charge state).

2015Lo04: ¹²⁰Tc nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10^{10} ions/s. Identification of ¹²⁰Tc was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹²⁰Tc isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique as described in 2014Xu07. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations. 2014Mi23: theoretical calculation of β -delayed-neutron emission probabilities.

¹²⁰Tc Levels

E(level)	T _{1/2}	Comments	
0	21 ms 5	$\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?$	
		Theoretical $T_{1/2}=21.8$ ms, $\%\beta^{-}n=31.1$, $\%\beta^{-}2n=2.5$ (2003Mo09).	
		Theoretical $T_{1/2}=34$ ms, $\%\beta^{-}n=82.8$, $\%\beta^{-}2n=0.8$ (2016Ma12).	
		Measured $\sigma=2$ pb (2010Oh02), systematic uncertainty~40%. Probability of misidentification of ¹²⁰ Tc isotope<0.001% (2010Oh02).	
		E(level): measured half-life is assumed to correspond to the ground state of 120 Tc.	
		J^{π} : 1 ⁻ to 4 ⁻ based on $\Omega_p = 5/2^+$ and $\Omega_n = 3/2^-$ from theoretical considerations (1997Mo25).	
		$T_{1/2}$: measured by 2015Lo04 from (implanted ions) β correlated curves in time and position using maximum likelihood method. See 2015Lo04 for comparison of their experimental value with theoretical values.	