¹²⁰Sb ε + β ⁺ decay (5.76 d) **1970Pa17,1971Li09,1984Iw03**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	K. Kitao, Y. Tendow and A. Hashizume	NDS 96,241 (2002)	1-Dec-2001

Parent: ¹²⁰Sb: E=0.0+x; $J^{\pi}=8^-$; $T_{1/2}=5.76$ d 2; $Q(\varepsilon)=2681$ 7; $\%\varepsilon+\%\beta^+$ decay=100

¹²⁰Sb-E: Assumed 151 *1*.

1970Pa17: ¹²¹Sb(γ ,n) E=25 MeV; semi, scin; γ , $\gamma\gamma$.

1971Li09: ¹²⁰Sn(n,p) E=14-15 MeV; semi, scin; γ , $\gamma\gamma$, (K x ray) γ coin.

1984Iw03: ¹²⁰Sn(p,n); semi.

Others: 1958Mc59, 1960Ik01, 1961Ik03.

Decay scheme was first suggested by 1961Bo13 and 1961Ik03.

¹²⁰Sn Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	0^{+}	stable	
1171.7 <i>3</i>	2+		
2195.1 5	4+	≤0.15 ns	$T_{1/2}$: from $\gamma\gamma(t)$ (1967Ra26); other: ≤ 0.6 (1962Bo16).
2284.9 5	5-	5.55 ns 3	g=-0.074 10
			$\overline{T}_{1/2}$: from $\gamma\gamma(t)$; weighted average of 6.05 ns 20 (1960Ik01), 5.2 ns 4 (1961Bo13), 5.53 ns 6 (1962Bo16), 5.55 ns 25 (1967Ra26), 5.55 ns 3 (1980Mi13); other 8.2 ns 23 (1963Cu04).
2482.2 6	7-	11.8 μs 5	$T_{1/2}$: from X γ (t) (1960Ik01); others: 11 μ s 1 (1960Ik01), 11.2 μ s 10 (1961Bo13).

[†] From Adopted Levels.

[‡] From a least-squares fit to $E(\gamma' s)$ by the evaluators.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments				
≈199	2482.2	100	5.174 20	εK=0.8432 5; εL=0.1243 4; εM+=0.03250 11				

[†] Absolute intensity per 100 decays.

$\gamma(^{120}\text{Sn})$

I γ normalization: based on assumption of no direct feeding to 120 Sn g.s. and adopted decay scheme.

ce from 1960Ik01; K/(L+M) from 1958Mc59.

γγ coin from 1958Mc59, 1960Ik01, 1961Ik03; see also 1968Ra14, 1970Pa17, 1971Li09.

See 1958Mc59 for coincidence intensity ratios of $(x-ray)(89.8\gamma)$ coin to $(x-ray)(197.3\gamma)$ coin. 1960Ik01; results are consistent with adopted ε feeding to 2482.2 level.

 $\gamma\gamma(\theta)$, $(ce(K))\gamma(\theta)$, $(pol \gamma)\gamma(\theta)$; see 1960Ik01 for results generally consistent with adopted level spins.

 $\gamma\gamma(\theta,H,t) - \gamma(2285 \text{ level})$ from 1962Bo16; see also 1964DeZZ.

 $\gamma\gamma(\theta,T,t) - Q(2285 \text{ level}) \text{ from } 1970Wo02.$

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger@}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	α &	Comments
89.8 <i>3</i>	79.5 16	2284.9	5-	2195.1 4+	E1	0.247	$\alpha(K)= 0.2133; \ \alpha(L)= 0.0271; \ \alpha(M)=0.00524; \ \alpha(N+)=0.00113 \ \alpha(K)\exp=0.300 \ 26, \ K/(L+M)=8 \ 1.$
197.3 <i>3</i>	87.0 11	2482.2	7-	2284.9 5-	E2	0.147	α (K)= 0.1195; α (L)=0.02176; α (M)=0.00432; α (N+)=0.00093 α (K)exp=0.152 <i>12</i> , K/(L+M)=4.6 <i>2</i> .

Continued on next page (footnotes at end of table)

¹²⁰Sb ε + β ⁺ decay (5.76 d) 1970Pa17,1971Li09,1984Iw03 (continued)

$\gamma(^{120}\text{Sn})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger @}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	Comments
1023.3 4	99.4 <i>3</i>	2195.1	4+	1171.7 2+	E2	α(K)exp=0.00115 10
1113.4 6	0.821 10	2284.9	5-	1171.7 2+		
1171.7 <i>3</i>	100	1171.7	2^{+}	$0.0 \ 0^{+}$	E2	

[†] From 1971Li09; values from 1970Pa17 seem systematically low.

[‡] From 1984Iw03.

[#] Deduced by the evaluators by normalizing Ice to I γ assuming $\alpha(1171.7\gamma)=0.00092$ for an E2 transition and comparing with theory (1968Ha52).

 ^(a) Absolute intensity per 100 decays.
[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹²⁰Sb ε decay (5.76 d) 1970Pa17,1971Li09,1984Iw03

