	Type				1	Histor	у	Citation	Literature Cutoff Date			
	Full Evaluation K.		K. Kit	ao, Y.	Tend	low and A. Hashizur	ne	NDS 96, 241 (2002)	1-Dec-2001			
$Q(\beta^{-})=950 \ 8; \ S(\beta^{-})=950 \ 8; \ S(\beta^{-})=982 \ 13; \ S(\beta^{-})=$	n)=7015 aluation 5(n)=702	5 11; S(p)= has used th 21 11; S(p)=	5642 8; he follov =5644 7	Q(α) wing 7; Q(α	=-25 Q rec ()=-2	93 8 2012Wa38 ord. 598 8 1995Au04						
						¹²⁰ Sb Le	evels					
						Cross Reference (XRE	F) Flags				
				A B C D	116 119 120 120	$Cd(^{7}Li,3n\gamma)$ Sn(p,n) IAR $Sn(p,n\gamma)$ Sn(p,n):bound states	E F G	¹²⁰ Sn(p,np) IAR ¹²⁰ Sn(³ He,t) IAR ¹²¹ Sb(p,d),(d,t)				
E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XRE	F			Commen	ıts			
0.0	1+	15.89 m	in 4	C E	G	$%ε+%β^+=100$ μ=2.34 22 μ: atomic beam ma (1989Ra17). The assignment of J ^π : atomic beam (1 T _{1/2} : value from 19 1961Ra06, 1968] 1967Ha27, 1968]	gneti the 1 976F 965EI 3025, Ra14,	c resonance, value rela ⁺ isomer to g.s. is tent u06); π =+ from log ft = b01. For values in agre , 1973ArZI; for values , 1970Pa17.	tive to that of ¹²¹ Sb(g.s. 5/2 ⁺) ative. =4.5 to 0 ⁺ . ement with adopted value, see in disagreement, see 1950Jo59,			
0.0+x	8-	5.76 d	2 F	A		$%ε+%β^+=100$ μ=2.34 <i>I</i> Additional informat μ: radiative detection ¹²² Sb (2 ⁻ g.s.) (E(level): 0 <i>100</i> is s J ^π : atomic beam (1	tion 1 on of 1989I ugges 974E	NMR, value recalculat Ra17). sted in 1997Au04 as a k01), NMR (1974Ca06	ted and relative to μ =-1.905 20 for value from systematics. (5); parity from log <i>ft</i> =5.17 to (7) ⁻ .			
8.37 <i>6</i> 78.16 <i>5</i>	(2) ⁻ 3 ⁺	246 ns 2		C C	G	$J_{1/2}$. value from 190/fra2/. See also 1938MC39, 1908B023, 1908K006, 1972Pa13. J^{π} : E1 γ from 3 ⁺ , syst of low-lying 2 ⁻ in even-mass Sb isotopes. μ =+2.584 6; Q=0.41 4 μ ,Q: differential perturbed angular correlation of γ 's following nuclear reaction. μ does not include a Knight-shift correction; Q relative to that for g.s. of ¹²¹ Sb and includes the Sternheimer correction (1989Ra17). J^{π} : excit in (p,n γ) suggests 3 ⁺ ,0 ⁻ ; L(p,d),(d,p)=0 rules out 0 ⁻ . $T_{1/2}$: weighted average of 241 ns 3 (1979Ad02) and 247 ns 1 (1976Io03) in (p,n γ)						
149.32 5	3+			С	G	J^{π} : excit in (p,n γ) s	ugge	sts 3 ⁺ ,0 ⁻ ; L(p,d),(d,p)=	=0 rules out 0^- .			
165.20+x 24 166.09 7 192.62 4	$3^{-}_{2^{+}}$		I	C C	G	J ^{π} : excit and $\gamma(\theta)$ is XREF: G(191). J ^{π} : M1+E2 γ to 1 ⁺	n (p,r ; L(p	(y, d), (d, t) = 0 + 2.				
230.40+x 21 233.09 4	2+		I	C	G	XREF: G(236). J ^π : L(p,d),(d,t)=0; d	excit	in $(p,n\gamma)$ rules out 3 ⁺ .				
243.89 6 260.20 7 261.71 9	4 3 ⁻ 4			C C C	6	J^{π} : excit and $\gamma(\theta)$ is J^{π} : excit in (p,n γ). J^{π} : excit in (p,n γ).	n (p,r	ιγ).				
334.08 7	4			С	G G	XREF: G(332).						

Continued on next page (footnotes at end of table)

¹²⁰Sb Levels (continued)

E(level) [†]	$E(\text{level})^{\dagger}$ J^{π} XREF		Comments						
			J^{π} : excit and $\gamma(\theta)$ in (p,n γ).						
341.35 7	5	С	J^{π} : excit in (p,n γ).						
343.24 8	4	С	J^{π} : excit in (p,n γ).						
387.11 14		C G	XREF: G(384).						
390.34 5	2,3	C	J^{π} : excit in (p,n γ).						
437.68 6	2^{+}	C G	XREF: G(435).						
			J^{π} : excit and $\gamma(\theta)$ in (p,n γ) allows 1,2 and π =+ from L(p,d),(d,t)=0+2.						
447.69 4	I^{+}	C .	J^{n} : excit and $\gamma(\ln \text{ pol})$ in (p,n γ), γ to 3^{+} .						
518.0+X 3		A							
616 60 21		C							
628 46 11	2+ 3+	C G	XREF: G(673)						
020.40 11	2,5	CU	$I^{\pi} \cdot I(\mathbf{n} d) (d t) = 0 + 2$						
636.59 15	$2.3.4^{+}$	C	I^{π} : γ' s to 2 ⁺ and 4.						
668 5	$2+3+\frac{8}{2}$	G							
699 5	2,5	G	$I^{\pi} \cdot I(nd)(dt) = 2+4$						
724.24 13	$2^{+}.3^{+}$	C G	XREF: G(718).						
	_ ,=		J^{π} : L(p,d).(d,t)=0+2.						
729.82 21		С							
758.69 21		С							
760.92 13		С							
772 4	+	G	J^{π} : L(p,d),(d,t)=4.						
820.39 21		C							
821.69 21		C							
841.64 14	2+,3+	C G	J^{n} : L(p,d),(d,t)=0+2.						
858.0+x ⁺ 3	(8 ⁻)	Α	J^{π} : syst for $\Delta J=1$ band and its band head in Sb isotopes.						
901.69 21	0	C							
908.29 21	2 ⁺ ,3 ⁺	C G							
934 4	+	G	J^{π} : L(p,d),(d,t)=2.						
974 4	2+,3+ X	G							
1022.35 17	+	CEG	J^{π} : L(p,d),(d,t)=2.						
1032.31 15	0	C							
1037.06+x [‡] 25	(9 ⁻) [@]	Α							
1059 5	2+,3+ <mark>&</mark>	G							
1104 4	+	G	J^{π} : L(p,d),(d,t)=2.						
1164 4	$2^+, 3^{+a}$	G							
1208 4	+ 0	G	J^{π} : L(p,d),(d,t)=2.						
1239 4	2+,3+X	G							
1242.6+x <i>3</i>		Α							
1285 4	0	G	E(level): possible doublet with $L(p,d),(d,t)=0,5$.						
1331 4	2 ⁺ ,3 ⁺	G							
1369.9+x [‡] 4	$(10^{-})^{@}$	Α							
1383 4	2 ⁺ ,3 ⁺ &	G							
1449.8+x 4	,	Α							
1457 5	2 ⁺ .3 ⁺ &	G							
1499 4	+ ´	G	J^{π} : L(p,d),(d,t)=2.						
1550 5	+	G	J^{π} : L(p,d),(d,t)=2.						
1564.9+x 4		A							
1586 5	$2^+, 3^{+a}$	G							
1639 6	2+,3+ <mark>&</mark>	G							
1697 6	2+,3+ &	G							
1742.8+x [‡] 5	$(11^{-})^{@}$	A							
2123.9+x 5	× /	A							

Continued on next page (footnotes at end of table)

¹²⁰Sb Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
2134.1+x [‡] 5	$(12^{-})^{@}$		Α	
2266.3+x 4			Α	
2328.3+x 6		400 ns 8	Α	$T_{1/2}$: from (⁷ Li,3n γ).
2552.7+x [‡] 6	(13 ⁻)		Α	
2736.4+x 5			Α	
2884.7+x 6		14 ns 3	Α	$T_{1/2}$: from (⁷ Li,3n γ).
10204 [#] <i>30</i>			В	E(level): IAS of g.s. in ¹²⁰ Sn. $\Gamma(p)/\Gamma \approx 0.1$.
11354 ^{#} 30			В	E(level): IAS of 2^+ 1171 level in 120 Sn.
11994 [#] <i>30</i>			В	E(level): IAS of 0^+ 1875 level in 120 Sn.
12314 [#] <i>30</i>			В	E(level): IAS of 2^+ 2097 level in 120 Sn.
12504 [#] <i>30</i>			В	E(level): IAS of $0^+, 1^+$ 2297 level in 120 Sn.
12604 [#] <i>30</i>			В	E(level): IAS of 2^+ 2421 level in 120 Sn.
12784 [#] <i>30</i>			В	E(level): IAS of 0^+ 2587 level in 120 Sn.
12914 [#] <i>30</i>			В	E(level): IAS of 2^+ 2728 level in 120 Sn.
13034 [#] <i>30</i>			В	E(level): IAS of 1^+ 2835 level in 120 Sn.
13124 [#] <i>30</i>			В	E(level): IAS of 2^+ 2930 level in 120 Sn.

[†] For levels connecting with γ -transitions, from a least-squares fit to adopted $E(\gamma's)$ by the evaluators. Others from ¹²¹Sb(p,d),(d,t), unless otherwise noted.

[‡] Band(A): $\Delta J=1 \pi = -$ band. [#] From ¹¹⁹Sn(p,n) IAR.

^(e) $\Delta J=1 \gamma$ cascades and from an expected band structure. [&] L(p,d),(d,t)=0+2, L=0 component gives 2⁺,3⁺.

^{*a*} L(p,d),(d,t)=0+2+4, L=0 component gives $2^+,3^+$.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α &	Comments
78.16	3+	69.78 <i>4</i>	100	8.37	(2)-	E1		0.521	α (K)exp=0.43 4 (1976Io03); B(E1)(W.u.)=2.19×10 ⁻⁶ 2 Mult : from α (K)exp
149.32	3+	71.14 5	100	78.16	3+	(M1+E2)		3.6 20	Mult.: D+Q from $\gamma(\theta)$. Decay scheme requires $\Delta \pi$ =no.
165.20+x		165.0 [‡] 3	100	0.0+x	8-	D			
166.09	3-	157.66 5	100	8.37	$(2)^{-}$	D+Q			
192.62	2+	114.47 5	100.0 13	78.16	3+	(M1+E2)	0.00 4	0.73 30	Mult.: D+Q from $\gamma(\theta)$. Decay scheme requires $\Delta \pi$ =no.
		192.63 [#] 5	35 6	0.0	1+	M1+E2			Mult.: from $\gamma(\theta)$ and γ -ray linear pol in $(p,n\gamma)$.
230.40+x		65.0 [‡] 3	19.0 4	165.20+x		D			
		230.4 [‡] 3	100.0 4	0.0+x	8-	Q			
233.09	2^{+}	83.75 [#] 7	1.7 2	149.32	3+				
		154.91 [#] 7 233.09.5	30 <i>3</i> 100 0 <i>13</i>	78.16 0.0	3^+ 1 ⁺				
243.89	4	94.51 [#] 6 165.61 7	73 8 100 4	149.32 78.16	3+ 3+	D+Q D+O			

$\gamma(^{120}\text{Sb})$

$\gamma(^{120}\text{Sb})$ (continued) $\delta^{@}$ Mult.@ E_{γ} E_i(level) E_f J_{f}^{π} Comments I_{γ} 260.20 3-251.92 5 100 8.37 M1+E2 +0.075 $(2)^{-1}$ Mult.: from $\gamma(\theta)$ and γ -ray linear pol in $(p,n\gamma)$. 261.71 4 95.62 6 100 166.09 3-D+Q 334.08 4 90.2 1 10 *I* 243.89 4 100 4 149.32 3^{+} 184.76 5 D+Q 341.35 5 81.5 *1* 100 5260.20 3-97.33[#] 6 80 4 243.89 4 D+Q 177.15 5 343.24 4 100 166.09 3-387.11 125.4 1 100 261.71 4 146.44[#] 5 390.34 2,3 20.9 10 243.89 4 D+Q 157.21# 7 7.1 10 2^{+} 233.09 197.77 6 2^{+} 100 5 192.62 245.10[#] 6 437.68 2^{+} 12.6 13 192.62 2^{+} 271.43[#] 8 25.5 12 166.09 3-288.40 5 3^{+} $100 \ 5$ 149.32 D+Q 214.60[#] 5 1^{+} 2^{+} 447.69 29.8 14 233.09 255.02[#] 5 2^{+} 85 6 192.62 D+Q 369.60[#] 6 3^{+} 63 10 78.16 439.30[#] 9 76 11 8.37 $(2)^{-}$ 447.64 9 100 5 0.0 1^{+} D+Q 287.4[‡] 3 100 518.0+x 230.40+x 551.86 543.4 2 100 8.37 $(2)^{-}$ 372.8 2 616.69 100 243.89 4 $2^+, 3^+$ 2^{+} 628.46 395.3 2 22 1 233.09 2+ 192.62 436.02 63 *3* 1^{+} 628.5 2 100 5 0.0 636.59 $2,3,4^{+}$ 392.7 2 100 5 243.89 4 403.5 2 25 1 233.09 2^{+} $2^+, 3^+$ 724.24 390.2 2 33 2 334.08 4 2^{+} 531.6 2 100 5 192.62 3+ 729.82 580.5 2 100 149.32 758.69 592.6 2 100 166.09 3- $2^+, 3^+$ 760.92 132.5 1 100 628.46 1^{+} 313.1 2 82 4 447.69 2^{+} 820.39 100 233.09 587.3 2 577.8 2 243.89 821.69 100 4 $2^+, 3^+$ $2^+, 3^+$ 841.64 117.4 1 87 4 724.24 2^{+} 649.02 100 5192.62 339.9[‡] 3 858.0+x (8^{-}) 21 2 518.0+x D 627.6[‡] 3 100 1 230.40+x Q 2^{+} 901.69 668.62 100 233.09 $2^+, 3^+$ 2^{+} 908.29 675.2 2 100 233.09 1022.35 470.4 2 40 2 551.86 632.1 2 100 5 390.34 2,3 1^{+} 1032.31 584.7 2 100 5 447.69 641.9 2 64 *3* 390.34 2,3 178.9[‡] 3 (9^{-}) 1037.06 + x100 1 858.0+x (8^{-}) D+Q 1037.2[‡] 3 0.0+x8-1242.6[‡] 3 1242.6+x 100 0.0+x8-(Q) 332.8[‡] 3 1369.9+x (10^{-}) 100 1037.06+x (9⁻) D+Q 511.7^{‡a} 4 858.0+x (8^{-})

Continued on next page (footnotes at end of table)

D

931.8[‡] 3

100

518.0+x

1449.8+x

					χ	<i>bb)</i> (cont
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_{f}	\mathbf{J}_{f}^{π}	Mult.@
1564.9+x		115.0 [‡] 3 322.4 3	48 <i>1</i> 100 <i>1</i>	1449.8+x 1242.6+x		D D
1742.8+x	(11 ⁻)	372.9 [‡] 3 705.7 ^{‡a} 4	100	1369.9+x 1037.06+x	(10 ⁻) (9 ⁻)	D+Q
2123.9+x		559.0 [‡] 3	100	1564.9+x		D
2134.1+x	(12 ⁻)	391.3 [‡] <i>3</i> 764.2 [‡] <i>4</i>	100	1742.8+x 1369.9+x	(11 ⁻) (10 ⁻)	D+Q
2266.3+x		1023.7 [‡] <i>3</i>	100	1242.6+x		
2328.3+x		204.4 [‡] 3	100	2123.9+x		(Q)
2552.7+x	(13 ⁻)	418.6 [‡] 3		2134.1+x	(12 ⁻)	
2736.4+x		470.1 [‡] 3	100	2266.3+x		(Q)
2884.7+x		148.3 [‡] <i>3</i>	100	2736.4+x		(Q)

 γ (¹²⁰Sb) (continued)

[†] From ¹²⁰Sn(p,n γ), unless otherwise noted.

[‡] From (⁷Li, $3n\gamma$).

[#] Weighted av from 1979Ad02 and 1982Em02 in $(p,n\gamma)$. [@] From $\gamma(\theta)$ in $(p,n\gamma)$, unless otherwise noted.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

¹²⁰₅₁Sb₆₉

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{120}_{51}{
m Sb}_{69}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{120}_{51}{
m Sb}_{69}$

 $^{120}_{51}{
m Sb}_{69}$