	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	K. Kitao, Y. Tendow and A. Hashizume	NDS 96, 241 (2002)	1-Dec-2001

Parent: ¹²⁰Xe: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=40 \text{ min } l$; $Q(\varepsilon)=1960 \ 40$; $\%\varepsilon+\%\beta^+$ decay=100.0

1974Mu10: Ce(p,5pxn γ) E=600 MeV, on-line mass separation; semi γ , ce, $\gamma\gamma$, $\gamma\gamma(t)$, (ce)(γ)(t).

The decay scheme, $E\gamma$ and $I\gamma$ values are the same as given in the previous evaluation (1987Ha32); however, mult and δ values for some γ 's have changed and recalculated values based on revised spin-parity assignments are given.

120I	Levels
1201	Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		Comments
0.0	2-	81.6 min 2	T _{1/2} : from Adopted Levels.	
25.07.8	1+	13.6 ns 7		
72.61 9	$1^+.2^+.3^+$	228 ns 15		
89.81 10	$0^{-}.1^{-}$	2.0 ns 2		
102.25 10	1+	1.35 ns 5		
113.52 9	$1^+.2^+.3^+$			
153.77 9	1+			
158.63 11	1^{+}			
171.86 9	$1^+, 2^+$			
200.95 12	1+			
203.11 11	1+			
212.37 10	1+			
278.42 10	1,2			
334.63 12				
369.33 16	$0^{-},1$			
375.35 11	1+			
396.30 <i>13</i>	$0^{-},1$			
424.98 19	$0,1,2^{-}$			
449.32 10	1+			
476.46 17	0,1			
489.79 <i>14</i>	0,1			
529.52 14	$0^{-},1$			
580.66 13	$0^{-},1$			
658.75 18	0,1			
664.91 <i>15</i>	$0^{-},1$			
677.29 16	0,1			
707.73 14	0-,1			
850.77 12	1+			
897.83 14	$0^{-},1$			
965.62 10	1+			
1023.52 11	I^{\top}			
1039.20 17	$0^{-},1$			
1058.09 18	0,1			
1086.24 17	$0^{-},1$			
1142.86 15	1'			

[†] From a least-squares fit to $E(\gamma' s)$ by the evaluators.

[‡] From Adopted Levels.

[#] From $\gamma\gamma(t)$ (1974Mu10), unless otherwise noted.

$^{120}\mathbf{Xe}\,\varepsilon\,\mathbf{decay}$ 1974Mu10 (continued)

ε, β^+ radiations

E(decay)	E(level)	Iβ ⁺ †‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
$(8.2 \times 10^2 4)$	1142.86		1.85 19	5.47 7	1.85 19	εK=0.8495 5; εL=0.1186 4; εM+=0.03193 12
$(8.7 \times 10^2 4)$	1086.24		0.26 4	6.38 8	0.26 4	εK=0.8501 5; εL=0.1181 4; εM+=0.03179 11
$(9.0 \times 10^2 4)$	1058.09		0.75 9	5.95 7	0.75 9	εK=0.8504 4; εL=0.1179 3; εM+=0.03172 10
$(9.2 \times 10^2 4)$	1039.20		0.85 11	5.92 7	0.85 11	εK=0.8505 4; εL=0.1178 3; εM+=0.03168 9
$(9.4 \times 10^2 4)$	1023.52		2.39 24	5.48 6	2.39 24	εK=0.8507 4; εL=0.1177 3; εM+=0.03165 9
$(9.9 \times 10^2 4)$	965.62		15.9 <i>16</i>	4.71 6	15.9 16	εK=0.8512 4; εL=0.11731 25; εM+=0.03153 8
$(1.06 \times 10^3 4)$	897.83		1.36 14	5.84 6	1.36 14	εK=0.8516 3; εL=0.11694 22; εM+=0.03142 7
$(1.11 \times 10^3 4)$	850.77		5.0 5	5.31 6	5.0 5	εK=0.8519 3; εL=0.11671 20; εM+=0.03135 6
$(1.25 \times 10^3 4)$	707.73		1.80 21	5.87 6	1.80 21	εK=0.8524 1; εL=0.11609 18; εM+=0.03115 6
$(1.28 \times 10^3 4)$	677.29		0.43 8	6.51 9	0.43 8	εK=0.8524 3; εL=0.11595 19; εM+=0.03111 6
$(1.30 \times 10^3 4)$	664.91		0.97 11	6.16 6	0.97 11	εK=0.8523 3; εL=0.11590 20; εM+=0.03109 6
$(1.30 \times 10^3 4)$	658.75		0.64 8	6.35 7	0.64 8	εK=0.8523 4; εL=0.11587 20; εM+=0.03108 6
$(1.38 \times 10^3 4)$	580.66	0.006 <i>3</i>	2.6 4	5.79 8	2.6 4	av $E\beta$ =169 18; ε K=0.8514 9; ε L=0.11546 25; ε M+=0.03096 8
$(1.43 \times 10^3 \ 4)$	529.52	0.008 4	2.2 3	5.90 7	2.2 3	av Eβ=192 18; εK=0.8503 13; εL=0.1151 3; εM+=0.03087 9
$(1.47 \times 10^3 \ 4)$	489.79	0.0009 6	0.17 9	7.03 24	0.17 9	av Eβ=209 18; εK=0.8491 17; εL=0.1148 4; εM+=0.03079 10
$(1.48 \times 10^3 \ 4)$	476.46	0.0026 11	0.43 7	6.64 8	0.43 7	av Eβ=215 18; εK=0.8486 18; εL=0.1147 4; εM+=0.03076 10
$(1.51 \times 10^3 \ 4)$	449.32	0.046 17	6.2 7	5.50 6	6.2 7	av Eβ=227 18; εK=0.8474 21; εL=0.1145 4; εM+=0.03069 11
$(1.54 \times 10^3 \ 4)$	424.98	0.0009 6	0.10 6	7.3 3	0.10 6	av E β =237 18; ε K=0.8462 24; ε L=0.1143 5; ε M+=0.03062 12
$(1.56 \times 10^3 \ 4)$	396.30	0.0047 16	0.43 6	6.69 7	0.43 6	av E β =250 18; ε K=0.844 3; ε L=0.1140 5; ε M+=0.03054 14
$(1.58 \times 10^3 4)$	375.35	0.019 8	1.5 4	6.16 12	1.5 4	av E β =259 18; ε K=0.843 3; ε L=0.1137 5; ε M+=0.03047 14
$(1.59 \times 10^3 \ 4)$	369.33	0.0040 14	0.30 6	6.86 9	0.30 6	av E β =261 18; ε K=0.843 4; ε L=0.1136 6; ε M+=0.03045 15
$(1.75 \times 10^3 \ 4)$	212.37	0.11 4	3.5 11	5.87 14	3.6 11	av Eβ=330 18; εK=0.827 6; εL=0.1112 9; εM+=0.02978 23
$(1.76 \times 10^3 \ 4)$	203.11	0.06 3	1.6 9	6.20 24	1.7 9	av Eβ=334 18; εK=0.826 6; εL=0.1110 9; εM+=0.02973 23
$(1.76 \times 10^3 4)$	200.95	0.15 5	4.3 12	5.78 12	4.5 12	av E β =335 18; ε K=0.826 6; ε L=0.1110 9; ε M+=0.02972 23
$(1.80 \times 10^3 \ 4)$	158.63	0.041 18	1.0 4	6.46 18	1.0 4	av E β =353 18; ε K=0.820 7; ε L=0.1101 10; ε M+=0.0295 3
$(1.81 \times 10^3 4)$	153.77	0.07 3	1.6 6	6.23 16	1.7 6	av E β =355 18; ε K=0.819 7; ε L=0.1100 10; ε M+=0.0294 3
$(1.86 \times 10^3 4)$	102.25	0.09 7	1.7 12	6.2 4	1.8 <i>13</i>	av E β =378 18; ε K=0.810 8; ε L=0.1087 11; ε M+=0.0291 3
$(1.87 \times 10^3 4)$	89.81	0.17 5	2.9 8	6.01 12	3.1 8	av Eβ=383 18; εK=0.808 8; εL=0.1084 11; εM+=0.0290 3
$(1.93 \times 10^3 \ 4)$	25.07	2.6 7	35 8	4.96 11	38 9	av Eβ=412 18; εK=0.796 9; εL=0.1066 13; εM+=0.0285 4
						Authors deduced $I(\beta^+)/I(\varepsilon)=7\%$ 1 for decay to 25.1 level.

[†] %Iβ=3 1 (1975Ho03).
[‡] Absolute intensity per 100 decays.

Iy normalization: based on assumption of no decay to 120 I g.s., since I($\varepsilon + \beta^+$)(g.s.)<0.1% for log $f^{1u}t$ >8.5.

E_{γ}^{\dagger}	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π} Mult. [#]	$\delta^{\#}$	α^{\ddagger}	Comments
25.1 2	330 35	25.07	1+	0.0 2-	E1		1.54 4	α(L)=1.21; α(M)=0.242 α(L)exp=1.23 <i>10</i> ; L1/(L2+L3)=0.90 <i>15</i> ; L1:L2:L3=1:0.42:0.69
40.9 ^a 2	7.4 ^{<i>a</i>} 22	113.52	1+,2+,3+	72.61 1+,	,2 ⁺ ,3 ⁺ M1		10.1	Mult.: from L-subshell ratios. $\alpha(K)=8.7 \ 3; \ \alpha(L)=1.15 \ 4; \ \alpha(M)=0.230 \ 7 \ \alpha(L)\exp=1.18 \ 20 \ given for a doubly placed G.$
40.9 ^{<i>a</i>} 2	1.6 ^a 5	212.37	1+	171.86 1+,	,2 ⁺ [M1]		10.1	$\alpha(K) = 8.7 3; \alpha(L) = 1.15 4; \alpha(M) = 0.230 7$
47.3 ^{&} 3	0.6 ^{&} 1	72.61	$1^+, 2^+, 3^+$	25.07 1+	[M1,E2]		17 11	$\alpha(K)=7.4\ 18;\ \alpha(L)=7\ 7;\ \alpha(M)=1.6\ 15$
47.3 ^{&b} 3	0.6 ^{&} 1	200.95	1^{+}	153.77 1+				
49.4 <i>3</i>	0.9 2	203.11	1^{+}	153.77 1+	[M1]		5.82	$\alpha(K)=4.99$ 15; $\alpha(L)=0.657$ 20; $\alpha(M)=0.132$ 4
51.5 2	4.8 5	153.77	1+	102.25 1+	M1		5.14	α (K)exp=4.1 6 α (K)=4.42 14; α (L)=0.581 18; α (M)=0.117 4; α (N+)=0.0286 9
53.4 3	0.8 2	212.37	1^{+}	158.63 1+	[M1]		4.63	$\alpha(K) = 3.97 \ 12; \ \alpha(L) = 0.523 \ 16; \ \alpha(M) = 0.105 \ 4; \ \alpha(N+) = 0.0257 \ 8$
56.7 4	1.0 2	158.63	1+	102.25 1+	[M1]		3.89	$\alpha(K)=3.34\ 10;\ \alpha(L)=0.439\ 14;\ \alpha(M)=0.088\ 3;\ \alpha(N+)=0.0216\ 7$
58.3 4	1.1 2	212.37	1+	153.77 1+	[M1]		3.58	$\alpha(K)=3.08\ 10;\ \alpha(L)=0.405\ 13;\ \alpha(M)=0.0811\ 25;\ \alpha(N+)=0.0199\ 6$
64.8 <i>3</i>	0.8 1	89.81	0-,1-	25.07 1+	[E1]		0.686	$\alpha(K)=0.586 \ 18; \ \alpha(L)=0.0803 \ 24; \ \alpha(M)=0.0159 \ 5; \ \alpha(N+)=0.00367 \ 11$
66.4 <i>3</i>	0.7 1	278.42	1,2	212.37 1+				
69.6 2	10.5 15	171.86	1+,2+	102.25 1+	M1+E2	0.31 8	2.52 20	α (K)exp=2.1 3; α (L)exp=0.42 8 α (K)=1.99 8; α (L)=0.42 10; α (M)=0.087 20; α (N+)=0.021
72.6 2	100	72.61	1+,2+,3+	0.0 2-	E1		0.500	α (K)exp=0.54 <i>10</i> ; α (L)exp=0.089 <i>20</i> α (K)=0.428 <i>13</i> ; α (L)=0.0579 <i>18</i> ; α (M)=0.0115 <i>4</i> ; α (N+)=0.00266 <i>8</i>
77.2 2	44.0 30	102.25	1 ⁺	25.07 1+	M1+E2	0.41 11	2.00 20	$\alpha(K) \exp[=1.77\ 25;\ \alpha(L) \exp[=0.34\ 8]$ $\alpha(K) = 1\ 55\ 9;\ \alpha(L) = 0\ 36\ 9;\ \alpha(M) = 0\ 074\ 19;\ \alpha(N+) = 0\ 017\ 5$
81.1 2	5.8 5	153.77	1+	72.61 1+,	,2 ⁺ ,3 ⁺ M1+E2	1.8 5	3.2 4	$\alpha(K) = 1.00 \ \beta, \alpha(L) = 0.00 \ \beta, \alpha(M) = 0.017 \ \beta, \alpha(K) = 0.017 \ \beta$ $\alpha(K) = 2.04 \ 16; \alpha(L) = 0.91 \ 14; \alpha(M) = 0.19 \ 3; \alpha(N+) = 0.044 \ 7 \ \delta$: deduced from >1.3 from $\alpha(L)$ exp and <2.3 from $\alpha(K)$ exp.
86.1 2	6.5 5	158.63	1+	72.61 1+,	,2 ⁺ ,3 ⁺ M1+E2	1.1 +9-4	2.2 5	α (K)exp=1.48 25 α (K)=1.50 24; α (L)=0.54 19; α (M)=0.11 4; α (N+)=0.026 9
88.7 <i>3</i>	2.0 3	113.52	$1^+, 2^+, 3^+$	25.07 1+	[M1,E2]		1.9 9	$\alpha(K)=1.35; \alpha(L)=0.44; \alpha(M)=0.097; \alpha(N+)=0.02116$

 $^{120}_{53}\mathrm{I}_{67}\text{--}3$

¹²⁰₅₃I₆₇-3

					120	Xe ε decay	1974Mu10 (continued)	
						$\gamma(^{120}$)I) (continued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\texttt{\#}}$	α^{\ddagger}	Comments
89.8 2	19.9 20	89.81	0-,1-	0.0	2-	E2(+M1)	>2.0	2.44 16	$\frac{\alpha(K)\exp=1.57\ 25;\ \alpha(L)\exp=0.69\ 10}{\alpha(K)=1.61\ 8;\ \alpha(L)=0.66\ 6;\ \alpha(M)=0.139\ 13;\ \alpha(N+)=0.032}$
97.0 3 99.0 ^a 2 99.0 ^a 2	2.1 <i>3</i> 6.0 ^{<i>a</i>} <i>12</i> 17.5 ^{<i>a</i>} <i>35</i>	375.35 171.86 212.37	1+ 1+,2+ 1+	278.42 72.61 113.52	1,2 1 ⁺ ,2 ⁺ ,3 ⁺ 1 ⁺ ,2 ⁺ ,3 ⁺	[M1+E2] (M1+E2)	0.8 +6-4	1.3 6 1.2 3	$\alpha(K)=1.0 \ 3; \ \alpha(L)=0.28 \ 19; \ \alpha(M)=0.06 \ 4; \ \alpha(N+)=0.013 \ 10 \ \alpha(K)=0.89 \ 16; \ \alpha(L)=0.24 \ 11; \ \alpha(M)=0.049 \ 22; \ \alpha(N+)=0.011 \ 5 \ \alpha(K)exp=0.89 \ 15, \ \alpha(L)exp=0.25 \ 7 \ \text{given for a doubly} \ placed \ G$
101.3 <i>3</i> <i>x</i> 105.0 <i>3</i>	1.3 2 0.3 <i>1</i>	203.11	1+	102.25	1+	[M1+E2]		1.2 5	$\alpha(K)=0.9 \ 3; \ \alpha(L)=0.25 \ 17; \ \alpha(M)=0.05 \ 4; \ \alpha(N+)=0.012 \ 9$
106.5 <i>3</i> 111.3 <i>3</i>	0.5 <i>1</i> 1.1 2	278.42 200.95	1,2 1 ⁺	171.86 89.81	1 ⁺ ,2 ⁺ 0 ⁻ ,1 ⁻	[E1]		0.151	α (K)=0.130 4; α (L)=0.0170 5; α (M)=0.00336 10; α (N+)=0.00079 2
113.7 ^{&} 3	0.4 ^{&} 1	113.52	1+,2+,3+	0.0	2-	[E1]		0.143	α (K)=0.123 4; α (L)=0.0160 5; α (M)=0.00316 10; α (N+)=0.00074 2
113.7 ^{&b} 3 124.8 3 128.8 2	0.4 ^{&} 1 1.6 2 17.5 15	203.11 278.42 153.77	1 ⁺ 1,2 1 ⁺	89.81 153.77 25.07	$0^{-}, 1^{-}$ 1^{+} 1^{+}	M1+E2	>0.7	0.60 12	α (K)exp=0.49 <i>10</i> α (K)=0.46 <i>8</i> ; α (L)=0.11 <i>4</i> ; α (M)=0.024 <i>8</i> ; α (N+)=0.0055
133.5 2	2.8 3	158.63	1+	25.07	1+	[M1+E2]		0.49 16	<i>18</i> $\alpha(K)=0.38 \ 10; \ \alpha(L)=0.08 \ 5; \ \alpha(M)=0.017 \ 10;$ $\alpha(M)=0.0041 \ 23$
139.9 2	7.3 6	212.37	1+	72.61	1+,2+,3+	[M1+E2]		0.42 13	$\alpha(N+)=0.0041 2.5$ $\alpha(K)=0.33 8; \alpha(L)=0.07 4; \alpha(M)=0.014 8; \alpha(N+)=0.0034$
142.1 <i>3</i>	0.8 1	476.46	0,1	334.63		[M1+E2]		0.40 12	$\alpha(K)=0.31 \ 8; \ \alpha(L)=0.07 \ 4; \ \alpha(M)=0.014 \ 8; \ \alpha(N+)=0.0032$ 17
146.9 2	3.1 3	171.86	1+,2+	25.07	1 ⁺	[M1+E2]		0.36 10	$\alpha(K)=0.28$ 7; $\alpha(L)=0.06$ 3; $\alpha(M)=0.012$ 7; $\alpha(N+)=0.0028$ 14
153.8 <i>3</i>	0.5 1	153.77	1+	0.0	2-	[E1]		0.0612	$\alpha(K)=0.0528 \ 16; \ \alpha(L)=0.00673 \ 21; \ \alpha(M)=0.00134 \ 4; \ \alpha(N+)=0.00032 \ 1$
157.0 <i>3</i> 159.0 <i>3</i>	0.9 <i>1</i> 0.3 <i>1</i>	369.33 158.63	$0^{-},1$ 1 ⁺	212.37 0.0	1^+ 2 ⁻	[E1]		0.0558	$\alpha(K)=0.0482 \ 15; \ \alpha(L)=0.00612 \ 19; \ \alpha(M)=0.00122 \ 4; \ \alpha(N+)=0.00029 \ 1$
164.9 2 172.2 ^a 2	3.3 <i>3</i> 4.0 ^{<i>a</i>} 8	278.42 171.86	1,2 1 ⁺ ,2 ⁺	113.52 0.0	1 ⁺ ,2 ⁺ ,3 ⁺ 2 ⁻	[E1]		0.0447	$\alpha(K)=0.0386 \ 12; \ \alpha(L)=0.00488 \ 15; \ \alpha(M)=0.00098 \ 3;$
172.2 ^{<i>a</i>} 2	11.0 ^{<i>a</i>} 22	375.35	1 ⁺	203.11	1 ⁺	M1,E2		0.21 5	α (N+)=0.00025 <i>T</i> α (K)=0.17 <i>4</i> ; α (L)=0.032 <i>14</i> ; α (M)=0.007 <i>3</i> ; α (N+)=0.0016 <i>7</i>
174.5 4	4.5 15	375.35	1+	200.95	1+	[M1+E2]		0.20 5	α (K)exp=0.17 4 given for a doubly placed G. α (K)=0.17 3; α (L)=0.030 13; α (M)=0.006 3; α (N+)=0.0015 6
176.0 ^a 3	50 ^a 10	200.95	1^{+}	25.07	1 ⁺	M1,E2		0.20 5	$\alpha(K)=0.16 \ 3; \ \alpha(L)=0.030 \ 13; \ \alpha(M)=0.006 \ 3;$

4

From ENSDF

 $^{120}_{53}\mathrm{I}_{67}\text{--}4$

 $^{120}_{53}\mathrm{I}_{67}\text{-}4$

120 Xe ε decay 1974Mu10 (continued)											
	γ ⁽¹²⁰ I) (continued)										
${\rm E_{\gamma}}^{\dagger}$	Ι _γ @	E _i (level)	\mathbf{J}_i^{π}	E _f	J_f^π	Mult. [#]	α^{\ddagger}	Comments			
176.0 ^{<i>a</i>} 3	10.5 ^{<i>a</i>} 21	334.63 203.11	1+	$158.63 1^+$ 25.07 1 ⁺		M1 F2	0 19 4	$\alpha(N+)=0.0014 \ 6$ $\alpha(K)\exp=0.15 \ 4 \text{ given for a doubly placed G.}$			
182.4 <i>3</i> 184.2 <i>3</i> 188 7 <i>3</i>	0.6 <i>1</i> 0.6 <i>1</i> 0.7 <i>1</i>	658.75 396.30 278.42	0,1 $0^-,1$ 1,2	476.46 0,1 212.37 1 ⁺ 89.81 0 ⁻	1-	[M1+E2]	0.18 4	$\alpha(K)=0.16\ 3;\ \alpha(L)=0.028\ 12;\ \alpha(M)=0.0058\ 25;\ \alpha(N+)=0.0014\ 6$ $\alpha(K)=0.145\ 24;\ \alpha(L)=0.026\ 11;\ \alpha(M)=0.0053\ 22;\ \alpha(N+)=0.0013\ 5$			
195.3 <i>3</i> 197.3 <i>3</i> 200.8 <i>2</i>	1.4 I 0.3 I 3.4 4 $2.5^{\&} 2$	396.30 369.33 200.95	$0^{-},1$ $0^{-},1$ 1^{+}	$\begin{array}{c} 00.01 & 0 \\ 200.95 & 1^{+} \\ 171.86 & 1^{+}, \\ 0.0 & 2^{-} \\ 0.0 & 2^{-} \end{array}$	2+	[E1]	0.0292	$\alpha(K)=0.0253 \ 8; \ \alpha(L)=0.00317 \ 10; \ \alpha(M)=0.00063 \ 2; \ \alpha(N+)=0.00015 \ 1$			
203.5 & 3 203.5 & 3 205.8 & 3 x 208.8 & 3	2.5 ^{&} 3 3.8 4 1.2 3	375.35 278.42	1 1 ⁺ 1,2	0.0 2 171.86 1+,, 72.61 1+,,	2 ⁺ 2 ⁺ ,3 ⁺	[M1+E2]	0.126 <i>21</i>	$\alpha(K)=0.104$ 14; $\alpha(L)=0.018$ 6; $\alpha(M)=0.0036$ 13; $\alpha(N+)=0.0009$ 3			
210.8 3 221.6 2 224.7 3 232.5 3	0.8 2 5.6 6 0.6 1 0.9 1	369.33 375.35 396.30 334.63	$0^{-},1$ 1^{+} $0^{-},1$	158.63 1+ 153.77 1+ 171.86 1+,, 102.25 1+	2+	[M1+E2]	0.097 14	$\alpha(K)=0.080$ 9; $\alpha(L)=0.013$ 4; $\alpha(M)=0.0027$ 9; $\alpha(N+)=0.00064$ 19			
⁴ 236.3 3 242.4 3 246.3 2 253.2 3	0.6 <i>I</i> 0.4 <i>I</i> 2.6 <i>3</i> 1.1 <i>I</i>	396.30 449.32 278.42	0 ⁻ ,1 1 ⁺ 1,2	$\begin{array}{c} 153.77 & 1^{+} \\ 203.11 & 1^{+} \\ 25.07 & 1^{+} \\ 72.61 & 1^{+} \end{array}$	a + a+						
262.0 3 271.8 3 277.5 3 279.6 3	0.7 <i>1</i> 1.6 2 4.1 <i>4</i> 4.2 <i>4</i>	334.63 424.98 489.79 369.33	$0,1,2^{-}$ 0,1 $0^{-},1$	$\begin{array}{c} 72.61 & 1^{+}, \\ 153.77 & 1^{+} \\ 212.37 & 1^{+} \\ 89.81 & 0^{-}, \\ 112.52 & 1^{+}, \end{array}$	2 ⁺ ,3 ⁺ 1 ⁻						
282.9 3 285.5 3 295.6 2 300.8 3	1.5 2 1.2 <i>I</i> 12.5 <i>I</i> 5 0.5 <i>I</i>	396.30 375.35 449.32 965.62	$0^{-},1$ 1^{+} 1^{+} 1^{+}	113.52 1+,2 89.81 0 ⁻ , 153.77 1 ⁺ 664.91 0 ⁻ ,	2+,3+ 1- 1						
302.3 3 309.6 3 311.1 3 315.8 3	1.2 <i>I</i> 6.5 <i>I0</i> 0.9 <i>I</i> 1.9 2	580.66 334.63 424.98 1023.52	0 ⁻ ,1 0,1,2 ⁻ 1 ⁺	278.42 1,2 25.07 1 ⁺ 113.52 1 ⁺ , 707.73 0 ⁻ ,	2 ⁺ ,3 ⁺ 1						
317.2 <i>3</i> 322.5 <i>4</i> 323.7 <i>4</i> 331.4 <i>4</i>	2.3 2 1.4 2 1.7 3 1.8 2	529.52 424.98 396.30 489.79	0 ⁻ ,1 0,1,2 ⁻ 0 ⁻ ,1 0,1	212.37 1 ⁺ 102.25 1 ⁺ 72.61 1 ⁺ , 158.63 1 ⁺	2+,3+						
335.9 2 342.1 3 346.9 3 350.2 3	11.6 <i>16</i> 2.8 <i>4</i> 6.0 <i>10</i> 4.8 <i>5</i>	449.32 677.29 449.32 375.35	1^+ 0,1 1^+ 1^+	$\begin{array}{c} 113.52 & 1^+, \\ 334.63 \\ 102.25 & 1^+ \\ 25.07 & 1^+ \end{array}$	2+,3+						

 $^{120}_{53}\mathrm{I}_{67}\text{--}5$

L

 $^{120}_{53}\mathrm{I}_{67}\text{--}5$

From ENSDF

$\gamma(^{120}I)$ (continued)

E_{γ}^{\dagger}	Ι _γ @	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
359.5 2	10.5 15	449.32	1^{+}	89.81	$0^{-}, 1^{-}$	562.5 3	2.7 3	664.91	$0^{-},1$	102.25	1+
^x 365.7 3	1.2 1				,	569.0 <i>3</i>	4.2 5	658.75	0,1	89.81	$0^{-}, 1^{-}$
375.5 ^a 4	0.4 ^a 1	375.35	1^{+}	0.0	2-	572.4 4	3.7 6	850.77	1+	278.42	1,2
375.5 ^a 4	2.6 ^a 8	529.52	$0^{-},1$	153.77	1^{+}	574.2 <i>4</i>	2.5 5	1023.52	1^{+}	449.32	1+
376.5 5	1.4 4	449.32	1+	72.61	$1^+, 2^+, 3^+$	^x 576.9 4	1.0 3				
385.0 <i>3</i>	10.5 12	965.62	1^{+}	580.66	$0^{-},1$	580.6 <i>3</i>	8.6 9	580.66	$0^{-},1$	0.0	2-
^x 390.6 3	0.8 1					590.4 <i>3</i>	17.5 20	965.62	1^{+}	375.35	1+
396.3 <i>3</i>	0.7 2	396.30	$0^{-},1$	0.0	2-	594.2 <i>3</i>	6.0 7	707.73	$0^{-},1$	113.52	$1^+, 2^+, 3^+$
399.9 <i>3</i>	1.0 2	489.79	0,1	89.81	$0^{-}, 1^{-}$	596.4 <i>4</i>	2.8 4	965.62	1^{+}	369.33	$0^{-},1$
401.4 3	2.4 3	850.77	1+	449.32	1^{+}	604.8 <i>3</i>	3.6 4	677.29	0,1	72.61	$1^+, 2^+, 3^+$
404.0 <i>3</i>	1.5 2	476.46	0,1	72.61	$1^+, 2^+, 3^+$	619.5 <i>3</i>	1.0 1	897.83	$0^{-},1$	278.42	1,2
407.9 <i>3</i>	1.1 <i>1</i>	897.83	$0^{-},1$	489.79	0,1	627.7 <i>3</i>	2.0 2	1023.52	1^{+}	396.30	$0^{-},1$
^x 412.4 3	0.5 1					631.1 <i>3</i>	11.6 14	965.62	1^{+}	334.63	
424.2 <i>3</i>	13.5 15	449.32	1^{+}	25.07	1+	638.5 <i>3</i>	3.3 4	850.77	1^{+}	212.37	1+
426.9 <i>3</i>	3.9 5	580.66	$0^{-},1$	153.77	1+	647.8 <i>3</i>	4.3 6	850.77	1^{+}	203.11	1+
429.4 <i>3</i>	2.5 3	707.73	$0^{-},1$	278.42	1,2	652.4 <i>3</i>	1.2 2	677.29	0,1	25.07	1+
436.1 <i>3</i>	0.9 1	965.62	1^{+}	529.52	$0^{-},1$	^x 656.7 3	2.7 3				
439.7 <i>3</i>	2.1 2	529.52	$0^{-},1$	89.81	$0^{-}, 1^{-}$	663.6 5	1.3 3	1039.20	$0^{-},1$	375.35	1+
446.4 <i>4</i>	1.2 2	658.75	0,1	212.37	1+	664.7 <i>4</i>	4.9 6	664.91	$0^{-},1$	0.0	2-
449.2 2	18.4 20	449.32	1+	0.0	2-	678.9 <i>2</i>	18.2 17	850.77	1^{+}	171.86	$1^+, 2^+$
451.1 <i>3</i>	3.0 5	476.46	0,1	25.07	1+	682.6 <i>3</i>	6.2 7	707.73	$0^{-},1$	25.07	1+
457.6 <i>3</i>	1.2 1	658.75	0,1	200.95	1+	685.5 <i>3</i>	2.7 3	897.83	$0^{-},1$	212.37	1+
462.1 <i>3</i>	0.9 1	664.91	$0^{-},1$	203.11	1+	689.0 <i>3</i>	1.5 2	1023.52	1+	334.63	
464.1 <i>4</i>	1.5 2	664.91	$0^{-},1$	200.95	1+	693.5 4	0.7 2	1142.86	1^{+}	449.32	1+
465.7 4	3.5 4	1142.86	1+	677.29	0,1	694.7 <i>4</i>	1.4 3	897.83	$0^{-},1$	203.11	1+
467.2 4	5.9 6	580.66	$0^{-},1$	113.52	$1^+, 2^+, 3^+$	697.0 4	1.9 2	850.77	1+	153.77	1+
x472.4 3	0.5 1					704.7 3	1.1 2	1039.20	$0^{-},1$	334.63	
476.0 3	6.4 7	965.62	1+	489.79	0,1	*707.0 3	0.4 1				
478.4 3	3.7 5	580.66	$0^{-},1$	102.25	1+	726.0 3	5.5 5	897.83	$0^{-},1$	1/1.86	1+,2+
*481.4 3	1.7 2	400 70	0.1	0.0	2-	737.3 3	0.8 1	850.77	1' 0- 1	113.52	1',2',3'
489.73	2.5 3	489.79	0,1	0.0	2	744.1.5	1.6.3	897.83	$^{0,1}_{1^+}$	153.77	1
493.8 3	1.0 1	1023.52	1'	529.52	0,1	745.4 5	1.8 3	1023.52	1+	2/8.42	1,2
495.3 4	0.6 2	/0/./3	0,1	212.37	1 ' 1 +	748.4 4	11.8 12	850.77	1 ' 1+	102.25	1+
504.5° 5	4.5° 14	529.52	0,1	25.07	1+	753.3 3	10.1 13	965.62	1+	212.37	1
504.5 5	3.04 9	707.73	0,1	203.11	1+	/62.5 3	50.4 45	965.62	1+	203.11	1 1+ 0+ 2+
506.9 5	2.0 5	/0/./3	0,1	200.95	1	770.8.5	0.71	850.77	1 · 0 = 1	72.01	1,2,3,3
510.2 4	3.3 3	850.77	1	334.03	1+	719.8 3	0.9 I	1058.09	0,1	2/8.42	1,2
519.0 5	0.8 I 15 2 16	520.52	0,1 0-1	138.05	1	195.4 5 X802 4 4	14.3 1/	903.02	1	1/1.00	1,2
525.4.5	13.310 212	329.32 707 72	0^{-1}	171.86	$^{2}_{1+2+}$	807.7.2	0.91	1086.24	0- 1	278 12	1.2
535.95	2.12	065.62	0,1 1+	171.00	$^{1},^{2}$	81173	0.9 <i>1</i> 810	065.62	0,1 1+	2/0.42	1,∠ 1+
551 / 3	2.0 5	66/ 01	$0^{-}1$	+24.90	$1^{+} 2^{+} 3^{+}$	820 / /	0.17	1023 52	1 1+	203 11	1 1+
555.6.3	$1.5 \ 20$	580.66	0^{-1}	25.07	1,2,3 1+	822.6 1	2.44	1023.52	1 1+	203.11	1 1+
555.0 5	10.5 20	560.00	0,1	25.07	1	022.04	2.14	1023.32	1	200.95	1

6

$\gamma(^{120}I)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{@}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	E_{γ}^{\dagger}	Ι _γ @	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
825.4 4	3.9 5	850.77	1+	25.07 1	[+	930.4 4	2.4 3	1142.86	1^{+}	212.37	1+
850.7 4	2.2 2	850.77	1^{+}	0.0 2	2-	933.4 4	0.5 1	1023.52	1^{+}	89.81	$0^{-}, 1^{-}$
852.1 4	4.9 6	965.62	1^{+}	113.52 1	1+,2+,3+	940.5 <i>3</i>	3.8 5	965.62	1^{+}	25.07	1^{+}
855.2 4	1.1 2	1058.09	$0^{-},1$	203.11 1	l ⁺	944.6 <i>4</i>	0.7 1	1058.09	$0^{-},1$	113.52	$1^+, 2^+, 3^+$
863.4 <i>3</i>	6.8 7	965.62	1+	102.25 1	[+	965.5 <i>3</i>	13.3 13	965.62	1+	0.0	2-
867.1 4	2.6 4	1039.20	$0^{-},1$	171.86 1	1+,2+	971.0 <i>3</i>	3.4 4	1142.86	1^{+}	171.86	$1^+, 2^+$
869.7 4	1.2 2	1023.52	1+	153.77 1	[+	984.1 <i>4</i>	0.5 1	1086.24	$0^{-},1$	102.25	1^{+}
872.6 <i>3</i>	1.7 2	897.83	$0^{-},1$	25.07 1	l ⁺	989.1 <i>3</i>	6.5 6	1142.86	1^{+}	153.77	1^{+}
875.7 <i>3</i>	9.4 10	965.62	1^{+}	89.81 0)-,1-	998.4 <i>3</i>	1.9 2	1023.52	1^{+}	25.07	1^{+}
880.9 <i>3</i>	0.6 2	1039.20	$0^{-},1$	158.63 1	l ⁺	1013.4 4	0.3 1	1086.24	$0^{-},1$	72.61	$1^+, 2^+, 3^+$
^x 884.0 4	1.2 2					1023.3 <i>3</i>	3.7 5	1023.52	1^{+}	0.0	2-
885.2 4	3.6 5	1039.20	$0^{-},1$	153.77 1	l ⁺	1029.4 4	3.0 4	1142.86	1+	113.52	$1^+, 2^+, 3^+$
893.0 4	0.5 1	965.62	1^{+}	72.61 1	$1^+, 2^+, 3^+$	1033.2 4	5.2 5	1058.09	$0^{-},1$	25.07	1^{+}
898.0 4	0.4 1	897.83	$0^{-},1$	0.0 2	2-	1057.8 4	0.2 1	1058.09	$0^{-},1$	0.0	2-
^x 900.1 4	0.5 1					1061.3 <i>3</i>	1.0 1	1086.24	$0^{-},1$	25.07	1^{+}
904.1 <i>4</i>	0.4 1	1058.09	$0^{-},1$	153.77 1	l ⁺	1086.3 4	0.3 1	1086.24	$0^{-},1$	0.0	2-
910.1 4	0.9 1	1023.52	1^{+}	113.52 1	$1^+, 2^+, 3^+$	1117.8 4	0.6 1	1142.86	1^{+}	25.07	1^{+}
921.1 <i>3</i>	3.2 4	1023.52	1^{+}	102.25 1	l ⁺	1142.7 4	0.9 2	1142.86	1+	0.0	2^{-}
925.5 4	0.5 1	1039.20	$0^{-},1$	113.52 1	$1^+, 2^+, 3^+$						

-

[†] From 1974Mu10. [‡] All α (L)exp and α (K)exp are renormalized to α (L)(E1)=1.21 for 25.1 γ . [#] From α (K)exp and/or α (L)exp. [@] For absolute intensity per 100 decays, multiply by 0.088 8. [&] Multiply placed with undivided intensity.

^{*a*} Multiply placed with intensity suitably divided.

^b Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

 $^{120}_{53}\mathrm{I}_{67}$

 $^{120}_{53}\mathrm{I}_{67}$

9

 $^{120}_{53}\mathrm{I}_{67}$ -10

 $^{120}_{53}\mathrm{I}_{67}$

¹²⁰Xe ε decay **1974Mu10**

 $^{120}_{53}\mathrm{I}_{67}$

Decay Scheme (continued)

