1 H(14 O,t) **2016Su05**

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968, 71 (2017)	1-Jan-2017	

2016Su05: XUNDL dataset compiled by TUNL, 2016.

The authors studied the low-lying structure of 12 O using the 1 H(14 O,t) reaction. A beam of 51 MeV/nucleon 14 O, produced by fragmenting a 16 O beam in a beryllium target, was ray-traced onto a cryogenic 7.1 mg/cm² hydrogen target that was held within a set of mylar foils. Tritons produced in the reactions were detected using a set of four position sensitive Δ E-E telescopes from the MUST2 array. At very forward angles (θ <1.6°) particles were detected using a Si-Si-Plastic (Δ E- Δ E-E) telescope.

Excitation energies were constructed from the missing mass, which was deduced from the triton energy and angular distributions, $\Delta E_x = \pm 100 \text{ keV}(\text{syst})$ was achieved. Four peaks in the excitation spectrum were deduced at $E_x = 0$, 1.62, 4.2 and 7.0 MeV. A DWBA analysis was used to analyze the data and to constrain the J^{π} values.

2009Su14: XUNDL dataset compiled by TUNL, 2009.

The authors measured ¹⁴O(p,t) at E(¹⁴O)=51 MeV/nucleon using a gas hydrogen target mounted in the SPEG/GANIL target chamber and using the MUST2 array to detect the triton recoils. The energy and angular distributions of tritons were measured, in coincidence with ¹⁰C recoils following decay of the unbound ¹²O ejectiles. A distorted wave analysis of the angular distributions is given, as well as, discussion on the breakdown of Z=8 shell closure.

These early results E_x =0±0.3 and 1.8±0.4 MeV and Γ =0.6±0.5 and 1.2±0.6 MeV, respectively, were found in agreement with the later results of (2016Su05).

¹²O Levels

E(level) [‡]	J^{π}	Γ	L^{\dagger}	Comments
0.0	0^{+}	<72 keV	0	Γ: From (2012Ja11).
1.62×10 ³ 11	0+	1.2 MeV 7	0	 E(level): From E=1.62 MeV 3(stat) 10(syst). Γ: From Γ=1.2 MeV 1(stat) +3-7(syst). Discussion is given that considers any evidence that this state may be a doublet. No evidence as such is found in the present results.
4.2×10^3 7.0×10^3	1-	2.2 MeV 2.2 MeV	1 0,1,2	

[†] From DWBA analysis.

[‡] From (2016Su05).