⁹Be(¹³O,¹²N) 2012Ja11,2013So11

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. H. Kelley, J. E. Purcell and C. G. Sheu	NP A968, 71 (2017)	1-Jan-2017	

2012Ja11: XUNDL dataset compiled by TUNL, 2012.

- A beam of E(¹³O)=30.3 MeV/nucleon ions was created using the ¹H(¹⁴N,¹³O)2n reaction at E(¹⁴O)=38 MeV/nucleon at the Texas A&M cyclotron facility. The beam was purified with the MARS spectrometer. The ¹³O projectiles impinged on a 45.6 mg/cm² ⁹Be target and sometimes underwent 1n and 1p knockout reactions that populated ¹²O and ¹²N states, respectively.
- All excited states in ¹²N are unbound to proton decay. The ejectiles decayed and the resulting 2p+¹⁰B of interest here were detected in a 10 cm x 10 cm position sensitive Si strip detector that was backed by a 32 element CsI(Tl) array to give ΔE-E particle identification. A kinematic reconstruction of the 2p+¹⁰B momenta yielded the excitation energies of produced ¹²N.
 2013So11: XUNDL dataset compiled by TUNL, 2013.
- A beam of $E(^{13}O)=30.3$ MeV/nucleon ions, produced via $^{1}H(^{14}N,^{13}O)$ reaction at the Texas A&M MARS facility, impinged on a 45.6 mg/cm² ^{9}Be target. Breakup particles were detected in a 10 cm×10 cm segmented ΔE -E telescope located on the beam axis, 18 cm from the target.
- Momentum analysis of the breakup particles permitted the kinematic reconstruction of the invariant mass and determination of excitation energies for ${}^{12}N*(p+{}^{11}C)$ and ${}^{13}O*(p+{}^{12}N \text{ and } 2p+{}^{11}C)$ states involved in the reactions. The intrinsic width resolution was roughly 50 keV and there was a 10 keV systematic uncertainty in the invariant mass energy. The excitation spectrum of $p+{}^{11}C$ was analyzed to deduce ${}^{12}N$ excited states.

Two states were observed and analyzed using both Breit-Wigner fits to the data and an R-matrix analysis.

The first and second excited states of ¹²N are observed. The energy is taken as the average of values deduced using Breit-Wigner and R-matrix analyses. The width of the $E_x=1.2$ MeV $J^{\pi}=2^{-}$ state is found to be significantly narrower than previously reported values; $\Gamma=55$ keV 20, compared with $\Gamma=118$ keV 14 from (1990Aj01) evaluation.

With the new data the IMME can be fitted with a parabolic form (2012Ja11).

¹²N Levels

E(level)	J^{π}	$T_{1/2}$ or Γ	Comments
0	1+†	11.000 [†] ms <i>16</i>	12 N were observed in the Δ E-E telescope.
968 10	2^{+}^{\dagger}	$<20^{\dagger}$ keV	Observed in p+ ¹¹ C spectrum and used for detector characterization.
1179 <i>17</i>	2^{-}	55 keV 20	E(level): From $E(p+^{11}C)=576$ keV 7.
12196 29	0^{+}	<110 keV	E(level): From E(^{2}p + $^{10}B^{*}(1740)$)=1.165 MeV 20 and ΔM =29534 keV 29.
			Γ: Deduced after correcting for experimental resolution.
≈14200			E(level): From $E(2p+{}^{10}B*(1740))\approx 3.17$ MeV.

[†] From Adopted Levels.

 ${}^{12}_{7}N_{5}$